Blob


1 #include <u.h>
2 #include <libc.h>
3 #include <draw.h>
4 #include <memdraw.h>
6 int drawdebug;
7 static int tablesbuilt;
9 /* perfect approximation to NTSC = .299r+.587g+.114b when 0 ≤ r,g,b < 256 */
10 #define RGB2K(r,g,b) ((156763*(r)+307758*(g)+59769*(b))>>19)
12 /*
13 * for 0 ≤ x ≤ 255*255, (x*0x0101+0x100)>>16 is a perfect approximation.
14 * for 0 ≤ x < (1<<16), x/255 = ((x+1)*0x0101)>>16 is a perfect approximation.
15 * the last one is perfect for all up to 1<<16, avoids a multiply, but requires a rathole.
16 */
17 /* #define DIV255(x) (((x)*257+256)>>16) */
18 #define DIV255(x) ((((x)+1)*257)>>16)
19 /* #define DIV255(x) (tmp=(x)+1, (tmp+(tmp>>8))>>8) */
21 #define MUL(x, y, t) (t = (x)*(y)+128, (t+(t>>8))>>8)
22 #define MASK13 0xFF00FF00
23 #define MASK02 0x00FF00FF
24 #define MUL13(a, x, t) (t = (a)*(((x)&MASK13)>>8)+128, ((t+((t>>8)&MASK02))>>8)&MASK02)
25 #define MUL02(a, x, t) (t = (a)*(((x)&MASK02)>>0)+128, ((t+((t>>8)&MASK02))>>8)&MASK02)
26 #define MUL0123(a, x, s, t) ((MUL13(a, x, s)<<8)|MUL02(a, x, t))
28 #define MUL2(u, v, x, y) (t = (u)*(v)+(x)*(y)+256, (t+(t>>8))>>8)
30 static void mktables(void);
31 typedef int Subdraw(Memdrawparam*);
32 static Subdraw chardraw, alphadraw, memoptdraw;
34 static Memimage* memones;
35 static Memimage* memzeros;
36 Memimage *memwhite;
37 Memimage *memblack;
38 Memimage *memtransparent;
39 Memimage *memopaque;
41 int __ifmt(Fmt*);
43 void
44 memimageinit(void)
45 {
46 static int didinit = 0;
48 if(didinit)
49 return;
51 didinit = 1;
53 mktables();
54 _memmkcmap();
56 fmtinstall('R', Rfmt);
57 fmtinstall('P', Pfmt);
58 fmtinstall('b', __ifmt);
60 memones = allocmemimage(Rect(0,0,1,1), GREY1);
61 memones->flags |= Frepl;
62 memones->clipr = Rect(-0x3FFFFFF, -0x3FFFFFF, 0x3FFFFFF, 0x3FFFFFF);
63 *byteaddr(memones, ZP) = ~0;
65 memzeros = allocmemimage(Rect(0,0,1,1), GREY1);
66 memzeros->flags |= Frepl;
67 memzeros->clipr = Rect(-0x3FFFFFF, -0x3FFFFFF, 0x3FFFFFF, 0x3FFFFFF);
68 *byteaddr(memzeros, ZP) = 0;
70 if(memones == nil || memzeros == nil)
71 assert(0 /*cannot initialize memimage library */); /* RSC BUG */
73 memwhite = memones;
74 memblack = memzeros;
75 memopaque = memones;
76 memtransparent = memzeros;
77 }
79 u32int _imgtorgba(Memimage*, u32int);
80 u32int _rgbatoimg(Memimage*, u32int);
81 u32int _pixelbits(Memimage*, Point);
83 #define DBG if(0)
84 static Memdrawparam par;
86 Memdrawparam*
87 _memimagedrawsetup(Memimage *dst, Rectangle r, Memimage *src, Point p0, Memimage *mask, Point p1, int op)
88 {
89 if(mask == nil)
90 mask = memopaque;
92 DBG print("memimagedraw %p/%luX %R @ %p %p/%luX %P %p/%luX %P... ", dst, dst->chan, r, dst->data->bdata, src, src->chan, p0, mask, mask->chan, p1);
94 if(drawclip(dst, &r, src, &p0, mask, &p1, &par.sr, &par.mr) == 0){
95 // if(drawdebug)
96 // iprint("empty clipped rectangle\n");
97 return nil;
98 }
100 if(op < Clear || op > SoverD){
101 // if(drawdebug)
102 // iprint("op out of range: %d\n", op);
103 return nil;
106 par.op = op;
107 par.dst = dst;
108 par.r = r;
109 par.src = src;
110 /* par.sr set by drawclip */
111 par.mask = mask;
112 /* par.mr set by drawclip */
114 par.state = 0;
115 if(src->flags&Frepl){
116 par.state |= Replsrc;
117 if(Dx(src->r)==1 && Dy(src->r)==1){
118 par.sval = pixelbits(src, src->r.min);
119 par.state |= Simplesrc;
120 par.srgba = _imgtorgba(src, par.sval);
121 par.sdval = _rgbatoimg(dst, par.srgba);
122 if((par.srgba&0xFF) == 0 && (op&DoutS)){
123 // if (drawdebug) iprint("fill with transparent source\n");
124 return nil; /* no-op successfully handled */
129 if(mask->flags & Frepl){
130 par.state |= Replmask;
131 if(Dx(mask->r)==1 && Dy(mask->r)==1){
132 par.mval = pixelbits(mask, mask->r.min);
133 if(par.mval == 0 && (op&DoutS)){
134 // if(drawdebug) iprint("fill with zero mask\n");
135 return nil; /* no-op successfully handled */
137 par.state |= Simplemask;
138 if(par.mval == ~0)
139 par.state |= Fullmask;
140 par.mrgba = _imgtorgba(mask, par.mval);
144 // if(drawdebug)
145 // iprint("dr %R sr %R mr %R...", r, par.sr, par.mr);
146 DBG print("draw dr %R sr %R mr %R %lux\n", r, par.sr, par.mr, par.state);
148 return &par;
151 void
152 _memimagedraw(Memdrawparam *par)
154 /*
155 * Now that we've clipped the parameters down to be consistent, we
156 * simply try sub-drawing routines in order until we find one that was able
157 * to handle us. If the sub-drawing routine returns zero, it means it was
158 * unable to satisfy the request, so we do not return.
159 */
161 /*
162 * Hardware support. Each video driver provides this function,
163 * which checks to see if there is anything it can help with.
164 * There could be an if around this checking to see if dst is in video memory.
165 */
166 DBG print("test hwdraw\n");
167 if(hwdraw(par)){
168 //if(drawdebug) iprint("hw handled\n");
169 DBG print("hwdraw handled\n");
170 return;
172 /*
173 * Optimizations using memmove and memset.
174 */
175 DBG print("test memoptdraw\n");
176 if(memoptdraw(par)){
177 //if(drawdebug) iprint("memopt handled\n");
178 DBG print("memopt handled\n");
179 return;
182 /*
183 * Character drawing.
184 * Solid source color being painted through a boolean mask onto a high res image.
185 */
186 DBG print("test chardraw\n");
187 if(chardraw(par)){
188 //if(drawdebug) iprint("chardraw handled\n");
189 DBG print("chardraw handled\n");
190 return;
193 /*
194 * General calculation-laden case that does alpha for each pixel.
195 */
196 DBG print("do alphadraw\n");
197 alphadraw(par);
198 //if(drawdebug) iprint("alphadraw handled\n");
199 DBG print("alphadraw handled\n");
201 #undef DBG
203 /*
204 * Clip the destination rectangle further based on the properties of the
205 * source and mask rectangles. Once the destination rectangle is properly
206 * clipped, adjust the source and mask rectangles to be the same size.
207 * Then if source or mask is replicated, move its clipped rectangle
208 * so that its minimum point falls within the repl rectangle.
210 * Return zero if the final rectangle is null.
211 */
212 int
213 drawclip(Memimage *dst, Rectangle *r, Memimage *src, Point *p0, Memimage *mask, Point *p1, Rectangle *sr, Rectangle *mr)
215 Point rmin, delta;
216 int splitcoords;
217 Rectangle omr;
219 if(r->min.x>=r->max.x || r->min.y>=r->max.y)
220 return 0;
221 splitcoords = (p0->x!=p1->x) || (p0->y!=p1->y);
222 /* clip to destination */
223 rmin = r->min;
224 if(!rectclip(r, dst->r) || !rectclip(r, dst->clipr))
225 return 0;
226 /* move mask point */
227 p1->x += r->min.x-rmin.x;
228 p1->y += r->min.y-rmin.y;
229 /* move source point */
230 p0->x += r->min.x-rmin.x;
231 p0->y += r->min.y-rmin.y;
232 /* map destination rectangle into source */
233 sr->min = *p0;
234 sr->max.x = p0->x+Dx(*r);
235 sr->max.y = p0->y+Dy(*r);
236 /* sr is r in source coordinates; clip to source */
237 if(!(src->flags&Frepl) && !rectclip(sr, src->r))
238 return 0;
239 if(!rectclip(sr, src->clipr))
240 return 0;
241 /* compute and clip rectangle in mask */
242 if(splitcoords){
243 /* move mask point with source */
244 p1->x += sr->min.x-p0->x;
245 p1->y += sr->min.y-p0->y;
246 mr->min = *p1;
247 mr->max.x = p1->x+Dx(*sr);
248 mr->max.y = p1->y+Dy(*sr);
249 omr = *mr;
250 /* mr is now rectangle in mask; clip it */
251 if(!(mask->flags&Frepl) && !rectclip(mr, mask->r))
252 return 0;
253 if(!rectclip(mr, mask->clipr))
254 return 0;
255 /* reflect any clips back to source */
256 sr->min.x += mr->min.x-omr.min.x;
257 sr->min.y += mr->min.y-omr.min.y;
258 sr->max.x += mr->max.x-omr.max.x;
259 sr->max.y += mr->max.y-omr.max.y;
260 *p1 = mr->min;
261 }else{
262 if(!(mask->flags&Frepl) && !rectclip(sr, mask->r))
263 return 0;
264 if(!rectclip(sr, mask->clipr))
265 return 0;
266 *p1 = sr->min;
269 /* move source clipping back to destination */
270 delta.x = r->min.x - p0->x;
271 delta.y = r->min.y - p0->y;
272 r->min.x = sr->min.x + delta.x;
273 r->min.y = sr->min.y + delta.y;
274 r->max.x = sr->max.x + delta.x;
275 r->max.y = sr->max.y + delta.y;
277 /* move source rectangle so sr->min is in src->r */
278 if(src->flags&Frepl) {
279 delta.x = drawreplxy(src->r.min.x, src->r.max.x, sr->min.x) - sr->min.x;
280 delta.y = drawreplxy(src->r.min.y, src->r.max.y, sr->min.y) - sr->min.y;
281 sr->min.x += delta.x;
282 sr->min.y += delta.y;
283 sr->max.x += delta.x;
284 sr->max.y += delta.y;
286 *p0 = sr->min;
288 /* move mask point so it is in mask->r */
289 *p1 = drawrepl(mask->r, *p1);
290 mr->min = *p1;
291 mr->max.x = p1->x+Dx(*sr);
292 mr->max.y = p1->y+Dy(*sr);
294 assert(Dx(*sr) == Dx(*mr) && Dx(*mr) == Dx(*r));
295 assert(Dy(*sr) == Dy(*mr) && Dy(*mr) == Dy(*r));
296 assert(ptinrect(*p0, src->r));
297 assert(ptinrect(*p1, mask->r));
298 assert(ptinrect(r->min, dst->r));
300 return 1;
303 /*
304 * Conversion tables.
305 */
306 static uchar replbit[1+8][256]; /* replbit[x][y] is the replication of the x-bit quantity y to 8-bit depth */
307 static uchar conv18[256][8]; /* conv18[x][y] is the yth pixel in the depth-1 pixel x */
308 static uchar conv28[256][4]; /* ... */
309 static uchar conv48[256][2];
311 /*
312 * bitmap of how to replicate n bits to fill 8, for 1 ≤ n ≤ 8.
313 * the X's are where to put the bottom (ones) bit of the n-bit pattern.
314 * only the top 8 bits of the result are actually used.
315 * (the lower 8 bits are needed to get bits in the right place
316 * when n is not a divisor of 8.)
318 * Should check to see if its easier to just refer to replmul than
319 * use the precomputed values in replbit. On PCs it may well
320 * be; on machines with slow multiply instructions it probably isn't.
321 */
322 #define a ((((((((((((((((0
323 #define X *2+1)
324 #define _ *2)
325 static int replmul[1+8] = {
326 0,
327 a X X X X X X X X X X X X X X X X,
328 a _ X _ X _ X _ X _ X _ X _ X _ X,
329 a _ _ X _ _ X _ _ X _ _ X _ _ X _,
330 a _ _ _ X _ _ _ X _ _ _ X _ _ _ X,
331 a _ _ _ _ X _ _ _ _ X _ _ _ _ X _,
332 a _ _ _ _ _ X _ _ _ _ _ X _ _ _ _,
333 a _ _ _ _ _ _ X _ _ _ _ _ _ X _ _,
334 a _ _ _ _ _ _ _ X _ _ _ _ _ _ _ X,
335 };
336 #undef a
337 #undef X
338 #undef _
340 static void
341 mktables(void)
343 int i, j, mask, sh, small;
345 if(tablesbuilt)
346 return;
348 fmtinstall('R', Rfmt);
349 fmtinstall('P', Pfmt);
350 tablesbuilt = 1;
352 /* bit replication up to 8 bits */
353 for(i=0; i<256; i++){
354 for(j=0; j<=8; j++){ /* j <= 8 [sic] */
355 small = i & ((1<<j)-1);
356 replbit[j][i] = (small*replmul[j])>>8;
360 /* bit unpacking up to 8 bits, only powers of 2 */
361 for(i=0; i<256; i++){
362 for(j=0, sh=7, mask=1; j<8; j++, sh--)
363 conv18[i][j] = replbit[1][(i>>sh)&mask];
365 for(j=0, sh=6, mask=3; j<4; j++, sh-=2)
366 conv28[i][j] = replbit[2][(i>>sh)&mask];
368 for(j=0, sh=4, mask=15; j<2; j++, sh-=4)
369 conv48[i][j] = replbit[4][(i>>sh)&mask];
373 static uchar ones = 0xff;
375 /*
376 * General alpha drawing case. Can handle anything.
377 */
378 typedef struct Buffer Buffer;
379 struct Buffer {
380 /* used by most routines */
381 uchar *red;
382 uchar *grn;
383 uchar *blu;
384 uchar *alpha;
385 uchar *grey;
386 u32int *rgba;
387 int delta; /* number of bytes to add to pointer to get next pixel to the right */
389 /* used by boolcalc* for mask data */
390 uchar *m; /* ptr to mask data r.min byte; like p->bytermin */
391 int mskip; /* no. of left bits to skip in *m */
392 uchar *bm; /* ptr to mask data img->r.min byte; like p->bytey0s */
393 int bmskip; /* no. of left bits to skip in *bm */
394 uchar *em; /* ptr to mask data img->r.max.x byte; like p->bytey0e */
395 int emskip; /* no. of right bits to skip in *em */
396 };
398 typedef struct Param Param;
399 typedef Buffer Readfn(Param*, uchar*, int);
400 typedef void Writefn(Param*, uchar*, Buffer);
401 typedef Buffer Calcfn(Buffer, Buffer, Buffer, int, int, int);
403 enum {
404 MAXBCACHE = 16
405 };
407 /* giant rathole to customize functions with */
408 struct Param {
409 Readfn *replcall;
410 Readfn *greymaskcall;
411 Readfn *convreadcall;
412 Writefn *convwritecall;
414 Memimage *img;
415 Rectangle r;
416 int dx; /* of r */
417 int needbuf;
418 int convgrey;
419 int alphaonly;
421 uchar *bytey0s; /* byteaddr(Pt(img->r.min.x, img->r.min.y)) */
422 uchar *bytermin; /* byteaddr(Pt(r.min.x, img->r.min.y)) */
423 uchar *bytey0e; /* byteaddr(Pt(img->r.max.x, img->r.min.y)) */
424 int bwidth;
426 int replcache; /* if set, cache buffers */
427 Buffer bcache[MAXBCACHE];
428 u32int bfilled;
429 uchar *bufbase;
430 int bufoff;
431 int bufdelta;
433 int dir;
435 int convbufoff;
436 uchar *convbuf;
437 Param *convdpar;
438 int convdx;
439 };
441 static uchar *drawbuf;
442 static int ndrawbuf;
443 static int mdrawbuf;
444 static Param spar, mpar, dpar; /* easier on the stacks */
445 static Readfn greymaskread, replread, readptr;
446 static Writefn nullwrite;
447 static Calcfn alphacalc0, alphacalc14, alphacalc2810, alphacalc3679, alphacalc5, alphacalc11, alphacalcS;
448 static Calcfn boolcalc14, boolcalc236789, boolcalc1011;
450 static Readfn* readfn(Memimage*);
451 static Readfn* readalphafn(Memimage*);
452 static Writefn* writefn(Memimage*);
454 static Calcfn* boolcopyfn(Memimage*, Memimage*);
455 static Readfn* convfn(Memimage*, Param*, Memimage*, Param*);
457 static Calcfn *alphacalc[Ncomp] =
459 alphacalc0, /* Clear */
460 alphacalc14, /* DoutS */
461 alphacalc2810, /* SoutD */
462 alphacalc3679, /* DxorS */
463 alphacalc14, /* DinS */
464 alphacalc5, /* D */
465 alphacalc3679, /* DatopS */
466 alphacalc3679, /* DoverS */
467 alphacalc2810, /* SinD */
468 alphacalc3679, /* SatopD */
469 alphacalc2810, /* S */
470 alphacalc11, /* SoverD */
471 };
473 static Calcfn *boolcalc[Ncomp] =
475 alphacalc0, /* Clear */
476 boolcalc14, /* DoutS */
477 boolcalc236789, /* SoutD */
478 boolcalc236789, /* DxorS */
479 boolcalc14, /* DinS */
480 alphacalc5, /* D */
481 boolcalc236789, /* DatopS */
482 boolcalc236789, /* DoverS */
483 boolcalc236789, /* SinD */
484 boolcalc236789, /* SatopD */
485 boolcalc1011, /* S */
486 boolcalc1011, /* SoverD */
487 };
489 static int
490 allocdrawbuf(void)
492 uchar *p;
494 if(ndrawbuf > mdrawbuf){
495 p = realloc(drawbuf, ndrawbuf);
496 if(p == nil){
497 werrstr("memimagedraw out of memory");
498 return -1;
500 drawbuf = p;
501 mdrawbuf = ndrawbuf;
503 return 0;
506 static Param
507 getparam(Memimage *img, Rectangle r, int convgrey, int needbuf)
509 Param p;
510 int nbuf;
512 memset(&p, 0, sizeof p);
514 p.img = img;
515 p.r = r;
516 p.dx = Dx(r);
517 p.needbuf = needbuf;
518 p.convgrey = convgrey;
520 assert(img->r.min.x <= r.min.x && r.min.x < img->r.max.x);
522 p.bytey0s = byteaddr(img, Pt(img->r.min.x, img->r.min.y));
523 p.bytermin = byteaddr(img, Pt(r.min.x, img->r.min.y));
524 p.bytey0e = byteaddr(img, Pt(img->r.max.x, img->r.min.y));
525 p.bwidth = sizeof(u32int)*img->width;
527 assert(p.bytey0s <= p.bytermin && p.bytermin <= p.bytey0e);
529 if(p.r.min.x == p.img->r.min.x)
530 assert(p.bytermin == p.bytey0s);
532 nbuf = 1;
533 if((img->flags&Frepl) && Dy(img->r) <= MAXBCACHE && Dy(img->r) < Dy(r)){
534 p.replcache = 1;
535 nbuf = Dy(img->r);
537 p.bufdelta = 4*p.dx;
538 p.bufoff = ndrawbuf;
539 ndrawbuf += p.bufdelta*nbuf;
541 return p;
544 static void
545 clipy(Memimage *img, int *y)
547 int dy;
549 dy = Dy(img->r);
550 if(*y == dy)
551 *y = 0;
552 else if(*y == -1)
553 *y = dy-1;
554 assert(0 <= *y && *y < dy);
557 static void
558 dumpbuf(char *s, Buffer b, int n)
560 int i;
561 uchar *p;
563 print("%s", s);
564 for(i=0; i<n; i++){
565 print(" ");
566 if(p=b.grey){
567 print(" k%.2uX", *p);
568 b.grey += b.delta;
569 }else{
570 if(p=b.red){
571 print(" r%.2uX", *p);
572 b.red += b.delta;
574 if(p=b.grn){
575 print(" g%.2uX", *p);
576 b.grn += b.delta;
578 if(p=b.blu){
579 print(" b%.2uX", *p);
580 b.blu += b.delta;
583 if((p=b.alpha) != &ones){
584 print(" α%.2uX", *p);
585 b.alpha += b.delta;
588 print("\n");
591 /*
592 * For each scan line, we expand the pixels from source, mask, and destination
593 * into byte-aligned red, green, blue, alpha, and grey channels. If buffering is not
594 * needed and the channels were already byte-aligned (grey8, rgb24, rgba32, rgb32),
595 * the readers need not copy the data: they can simply return pointers to the data.
596 * If the destination image is grey and the source is not, it is converted using the NTSC
597 * formula.
599 * Once we have all the channels, we call either rgbcalc or greycalc, depending on
600 * whether the destination image is color. This is allowed to overwrite the dst buffer (perhaps
601 * the actual data, perhaps a copy) with its result. It should only overwrite the dst buffer
602 * with the same format (i.e. red bytes with red bytes, etc.) A new buffer is returned from
603 * the calculator, and that buffer is passed to a function to write it to the destination.
604 * If the buffer is already pointing at the destination, the writing function is a no-op.
605 */
606 #define DBG if(0)
607 static int
608 alphadraw(Memdrawparam *par)
610 int isgrey, starty, endy, op;
611 int needbuf, dsty, srcy, masky;
612 int y, dir, dx, dy;
613 Buffer bsrc, bdst, bmask;
614 Readfn *rdsrc, *rdmask, *rddst;
615 Calcfn *calc;
616 Writefn *wrdst;
617 Memimage *src, *mask, *dst;
618 Rectangle r, sr, mr;
620 r = par->r;
621 dx = Dx(r);
622 dy = Dy(r);
624 ndrawbuf = 0;
626 src = par->src;
627 mask = par->mask;
628 dst = par->dst;
629 sr = par->sr;
630 mr = par->mr;
631 op = par->op;
633 isgrey = dst->flags&Fgrey;
635 /*
636 * Buffering when src and dst are the same bitmap is sufficient but not
637 * necessary. There are stronger conditions we could use. We could
638 * check to see if the rectangles intersect, and if simply moving in the
639 * correct y direction can avoid the need to buffer.
640 */
641 needbuf = (src->data == dst->data);
643 spar = getparam(src, sr, isgrey, needbuf);
644 dpar = getparam(dst, r, isgrey, needbuf);
645 mpar = getparam(mask, mr, 0, needbuf);
647 dir = (needbuf && byteaddr(dst, r.min) > byteaddr(src, sr.min)) ? -1 : 1;
648 spar.dir = mpar.dir = dpar.dir = dir;
650 /*
651 * If the mask is purely boolean, we can convert from src to dst format
652 * when we read src, and then just copy it to dst where the mask tells us to.
653 * This requires a boolean (1-bit grey) mask and lack of a source alpha channel.
655 * The computation is accomplished by assigning the function pointers as follows:
656 * rdsrc - read and convert source into dst format in a buffer
657 * rdmask - convert mask to bytes, set pointer to it
658 * rddst - fill with pointer to real dst data, but do no reads
659 * calc - copy src onto dst when mask says to.
660 * wrdst - do nothing
661 * This is slightly sleazy, since things aren't doing exactly what their names say,
662 * but it avoids a fair amount of code duplication to make this a case here
663 * rather than have a separate booldraw.
664 */
665 //if(drawdebug) iprint("flag %lud mchan %lux=?%x dd %d\n", src->flags&Falpha, mask->chan, GREY1, dst->depth);
666 if(!(src->flags&Falpha) && mask->chan == GREY1 && dst->depth >= 8 && op == SoverD){
667 //if(drawdebug) iprint("boolcopy...");
668 rdsrc = convfn(dst, &dpar, src, &spar);
669 rddst = readptr;
670 rdmask = readfn(mask);
671 calc = boolcopyfn(dst, mask);
672 wrdst = nullwrite;
673 }else{
674 /* usual alphadraw parameter fetching */
675 rdsrc = readfn(src);
676 rddst = readfn(dst);
677 wrdst = writefn(dst);
678 calc = alphacalc[op];
680 /*
681 * If there is no alpha channel, we'll ask for a grey channel
682 * and pretend it is the alpha.
683 */
684 if(mask->flags&Falpha){
685 rdmask = readalphafn(mask);
686 mpar.alphaonly = 1;
687 }else{
688 mpar.greymaskcall = readfn(mask);
689 mpar.convgrey = 1;
690 rdmask = greymaskread;
692 /*
693 * Should really be above, but then boolcopyfns would have
694 * to deal with bit alignment, and I haven't written that.
696 * This is a common case for things like ellipse drawing.
697 * When there's no alpha involved and the mask is boolean,
698 * we can avoid all the division and multiplication.
699 */
700 if(mask->chan == GREY1 && !(src->flags&Falpha))
701 calc = boolcalc[op];
702 else if(op == SoverD && !(src->flags&Falpha))
703 calc = alphacalcS;
707 /*
708 * If the image has a small enough repl rectangle,
709 * we can just read each line once and cache them.
710 */
711 if(spar.replcache){
712 spar.replcall = rdsrc;
713 rdsrc = replread;
715 if(mpar.replcache){
716 mpar.replcall = rdmask;
717 rdmask = replread;
720 if(allocdrawbuf() < 0)
721 return 0;
723 /*
724 * Before we were saving only offsets from drawbuf in the parameter
725 * structures; now that drawbuf has been grown to accomodate us,
726 * we can fill in the pointers.
727 */
728 spar.bufbase = drawbuf+spar.bufoff;
729 mpar.bufbase = drawbuf+mpar.bufoff;
730 dpar.bufbase = drawbuf+dpar.bufoff;
731 spar.convbuf = drawbuf+spar.convbufoff;
733 if(dir == 1){
734 starty = 0;
735 endy = dy;
736 }else{
737 starty = dy-1;
738 endy = -1;
741 /*
742 * srcy, masky, and dsty are offsets from the top of their
743 * respective Rectangles. they need to be contained within
744 * the rectangles, so clipy can keep them there without division.
745 */
746 srcy = (starty + sr.min.y - src->r.min.y)%Dy(src->r);
747 masky = (starty + mr.min.y - mask->r.min.y)%Dy(mask->r);
748 dsty = starty + r.min.y - dst->r.min.y;
750 assert(0 <= srcy && srcy < Dy(src->r));
751 assert(0 <= masky && masky < Dy(mask->r));
752 assert(0 <= dsty && dsty < Dy(dst->r));
754 for(y=starty; y!=endy; y+=dir, srcy+=dir, masky+=dir, dsty+=dir){
755 clipy(src, &srcy);
756 clipy(dst, &dsty);
757 clipy(mask, &masky);
759 bsrc = rdsrc(&spar, spar.bufbase, srcy);
760 DBG print("[");
761 bmask = rdmask(&mpar, mpar.bufbase, masky);
762 DBG print("]\n");
763 bdst = rddst(&dpar, dpar.bufbase, dsty);
764 DBG dumpbuf("src", bsrc, dx);
765 DBG dumpbuf("mask", bmask, dx);
766 DBG dumpbuf("dst", bdst, dx);
767 bdst = calc(bdst, bsrc, bmask, dx, isgrey, op);
768 wrdst(&dpar, dpar.bytermin+dsty*dpar.bwidth, bdst);
771 return 1;
773 #undef DBG
775 static Buffer
776 alphacalc0(Buffer bdst, Buffer b1, Buffer b2, int dx, int grey, int op)
778 USED(grey);
779 USED(op);
780 memset(bdst.rgba, 0, dx*bdst.delta);
781 return bdst;
784 static Buffer
785 alphacalc14(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
787 Buffer obdst;
788 int fd, sadelta;
789 int i, sa, ma, q;
790 u32int s, t;
792 obdst = bdst;
793 sadelta = bsrc.alpha == &ones ? 0 : bsrc.delta;
794 q = bsrc.delta == 4 && bdst.delta == 4;
796 for(i=0; i<dx; i++){
797 sa = *bsrc.alpha;
798 ma = *bmask.alpha;
799 fd = MUL(sa, ma, t);
800 if(op == DoutS)
801 fd = 255-fd;
803 if(grey){
804 *bdst.grey = MUL(fd, *bdst.grey, t);
805 bsrc.grey += bsrc.delta;
806 bdst.grey += bdst.delta;
807 }else{
808 if(q){
809 *bdst.rgba = MUL0123(fd, *bdst.rgba, s, t);
810 bsrc.rgba++;
811 bdst.rgba++;
812 bsrc.alpha += sadelta;
813 bmask.alpha += bmask.delta;
814 continue;
816 *bdst.red = MUL(fd, *bdst.red, t);
817 *bdst.grn = MUL(fd, *bdst.grn, t);
818 *bdst.blu = MUL(fd, *bdst.blu, t);
819 bsrc.red += bsrc.delta;
820 bsrc.blu += bsrc.delta;
821 bsrc.grn += bsrc.delta;
822 bdst.red += bdst.delta;
823 bdst.blu += bdst.delta;
824 bdst.grn += bdst.delta;
826 if(bdst.alpha != &ones){
827 *bdst.alpha = MUL(fd, *bdst.alpha, t);
828 bdst.alpha += bdst.delta;
830 bmask.alpha += bmask.delta;
831 bsrc.alpha += sadelta;
833 return obdst;
836 static Buffer
837 alphacalc2810(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
839 Buffer obdst;
840 int fs, sadelta;
841 int i, ma, da, q;
842 u32int s, t;
844 obdst = bdst;
845 sadelta = bsrc.alpha == &ones ? 0 : bsrc.delta;
846 q = bsrc.delta == 4 && bdst.delta == 4;
848 for(i=0; i<dx; i++){
849 ma = *bmask.alpha;
850 da = *bdst.alpha;
851 if(op == SoutD)
852 da = 255-da;
853 fs = ma;
854 if(op != S)
855 fs = MUL(fs, da, t);
857 if(grey){
858 *bdst.grey = MUL(fs, *bsrc.grey, t);
859 bsrc.grey += bsrc.delta;
860 bdst.grey += bdst.delta;
861 }else{
862 if(q){
863 *bdst.rgba = MUL0123(fs, *bsrc.rgba, s, t);
864 bsrc.rgba++;
865 bdst.rgba++;
866 bmask.alpha += bmask.delta;
867 bdst.alpha += bdst.delta;
868 continue;
870 *bdst.red = MUL(fs, *bsrc.red, t);
871 *bdst.grn = MUL(fs, *bsrc.grn, t);
872 *bdst.blu = MUL(fs, *bsrc.blu, t);
873 bsrc.red += bsrc.delta;
874 bsrc.blu += bsrc.delta;
875 bsrc.grn += bsrc.delta;
876 bdst.red += bdst.delta;
877 bdst.blu += bdst.delta;
878 bdst.grn += bdst.delta;
880 if(bdst.alpha != &ones){
881 *bdst.alpha = MUL(fs, *bsrc.alpha, t);
882 bdst.alpha += bdst.delta;
884 bmask.alpha += bmask.delta;
885 bsrc.alpha += sadelta;
887 return obdst;
890 static Buffer
891 alphacalc3679(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
893 Buffer obdst;
894 int fs, fd, sadelta;
895 int i, sa, ma, da, q;
896 u32int s, t, u, v;
898 obdst = bdst;
899 sadelta = bsrc.alpha == &ones ? 0 : bsrc.delta;
900 q = bsrc.delta == 4 && bdst.delta == 4;
902 for(i=0; i<dx; i++){
903 sa = *bsrc.alpha;
904 ma = *bmask.alpha;
905 da = *bdst.alpha;
906 if(op == SatopD)
907 fs = MUL(ma, da, t);
908 else
909 fs = MUL(ma, 255-da, t);
910 if(op == DoverS)
911 fd = 255;
912 else{
913 fd = MUL(sa, ma, t);
914 if(op != DatopS)
915 fd = 255-fd;
918 if(grey){
919 *bdst.grey = MUL(fs, *bsrc.grey, s)+MUL(fd, *bdst.grey, t);
920 bsrc.grey += bsrc.delta;
921 bdst.grey += bdst.delta;
922 }else{
923 if(q){
924 *bdst.rgba = MUL0123(fs, *bsrc.rgba, s, t)+MUL0123(fd, *bdst.rgba, u, v);
925 bsrc.rgba++;
926 bdst.rgba++;
927 bsrc.alpha += sadelta;
928 bmask.alpha += bmask.delta;
929 bdst.alpha += bdst.delta;
930 continue;
932 *bdst.red = MUL(fs, *bsrc.red, s)+MUL(fd, *bdst.red, t);
933 *bdst.grn = MUL(fs, *bsrc.grn, s)+MUL(fd, *bdst.grn, t);
934 *bdst.blu = MUL(fs, *bsrc.blu, s)+MUL(fd, *bdst.blu, t);
935 bsrc.red += bsrc.delta;
936 bsrc.blu += bsrc.delta;
937 bsrc.grn += bsrc.delta;
938 bdst.red += bdst.delta;
939 bdst.blu += bdst.delta;
940 bdst.grn += bdst.delta;
942 if(bdst.alpha != &ones){
943 *bdst.alpha = MUL(fs, sa, s)+MUL(fd, da, t);
944 bdst.alpha += bdst.delta;
946 bmask.alpha += bmask.delta;
947 bsrc.alpha += sadelta;
949 return obdst;
952 static Buffer
953 alphacalc5(Buffer bdst, Buffer b1, Buffer b2, int dx, int grey, int op)
955 USED(dx);
956 USED(grey);
957 USED(op);
958 return bdst;
961 static Buffer
962 alphacalc11(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
964 Buffer obdst;
965 int fd, sadelta;
966 int i, sa, ma, q;
967 u32int s, t, u, v;
969 USED(op);
970 obdst = bdst;
971 sadelta = bsrc.alpha == &ones ? 0 : bsrc.delta;
972 q = bsrc.delta == 4 && bdst.delta == 4;
974 for(i=0; i<dx; i++){
975 sa = *bsrc.alpha;
976 ma = *bmask.alpha;
977 fd = 255-MUL(sa, ma, t);
979 if(grey){
980 *bdst.grey = MUL(ma, *bsrc.grey, s)+MUL(fd, *bdst.grey, t);
981 bsrc.grey += bsrc.delta;
982 bdst.grey += bdst.delta;
983 }else{
984 if(q){
985 *bdst.rgba = MUL0123(ma, *bsrc.rgba, s, t)+MUL0123(fd, *bdst.rgba, u, v);
986 bsrc.rgba++;
987 bdst.rgba++;
988 bsrc.alpha += sadelta;
989 bmask.alpha += bmask.delta;
990 continue;
992 *bdst.red = MUL(ma, *bsrc.red, s)+MUL(fd, *bdst.red, t);
993 *bdst.grn = MUL(ma, *bsrc.grn, s)+MUL(fd, *bdst.grn, t);
994 *bdst.blu = MUL(ma, *bsrc.blu, s)+MUL(fd, *bdst.blu, t);
995 bsrc.red += bsrc.delta;
996 bsrc.blu += bsrc.delta;
997 bsrc.grn += bsrc.delta;
998 bdst.red += bdst.delta;
999 bdst.blu += bdst.delta;
1000 bdst.grn += bdst.delta;
1002 if(bdst.alpha != &ones){
1003 *bdst.alpha = MUL(ma, sa, s)+MUL(fd, *bdst.alpha, t);
1004 bdst.alpha += bdst.delta;
1006 bmask.alpha += bmask.delta;
1007 bsrc.alpha += sadelta;
1009 return obdst;
1013 not used yet
1014 source and mask alpha 1
1015 static Buffer
1016 alphacalcS0(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
1018 Buffer obdst;
1019 int i;
1021 USED(op);
1022 obdst = bdst;
1023 if(bsrc.delta == bdst.delta){
1024 memmove(bdst.rgba, bsrc.rgba, dx*bdst.delta);
1025 return obdst;
1027 for(i=0; i<dx; i++){
1028 if(grey){
1029 *bdst.grey = *bsrc.grey;
1030 bsrc.grey += bsrc.delta;
1031 bdst.grey += bdst.delta;
1032 }else{
1033 *bdst.red = *bsrc.red;
1034 *bdst.grn = *bsrc.grn;
1035 *bdst.blu = *bsrc.blu;
1036 bsrc.red += bsrc.delta;
1037 bsrc.blu += bsrc.delta;
1038 bsrc.grn += bsrc.delta;
1039 bdst.red += bdst.delta;
1040 bdst.blu += bdst.delta;
1041 bdst.grn += bdst.delta;
1043 if(bdst.alpha != &ones){
1044 *bdst.alpha = 255;
1045 bdst.alpha += bdst.delta;
1048 return obdst;
1052 /* source alpha 1 */
1053 static Buffer
1054 alphacalcS(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
1056 Buffer obdst;
1057 int fd;
1058 int i, ma;
1059 u32int s, t;
1061 USED(op);
1062 obdst = bdst;
1064 for(i=0; i<dx; i++){
1065 ma = *bmask.alpha;
1066 fd = 255-ma;
1068 if(grey){
1069 *bdst.grey = MUL(ma, *bsrc.grey, s)+MUL(fd, *bdst.grey, t);
1070 bsrc.grey += bsrc.delta;
1071 bdst.grey += bdst.delta;
1072 }else{
1073 *bdst.red = MUL(ma, *bsrc.red, s)+MUL(fd, *bdst.red, t);
1074 *bdst.grn = MUL(ma, *bsrc.grn, s)+MUL(fd, *bdst.grn, t);
1075 *bdst.blu = MUL(ma, *bsrc.blu, s)+MUL(fd, *bdst.blu, t);
1076 bsrc.red += bsrc.delta;
1077 bsrc.blu += bsrc.delta;
1078 bsrc.grn += bsrc.delta;
1079 bdst.red += bdst.delta;
1080 bdst.blu += bdst.delta;
1081 bdst.grn += bdst.delta;
1083 if(bdst.alpha != &ones){
1084 *bdst.alpha = ma+MUL(fd, *bdst.alpha, t);
1085 bdst.alpha += bdst.delta;
1087 bmask.alpha += bmask.delta;
1089 return obdst;
1092 static Buffer
1093 boolcalc14(Buffer bdst, Buffer b1, Buffer bmask, int dx, int grey, int op)
1095 Buffer obdst;
1096 int i, ma, zero;
1098 obdst = bdst;
1100 for(i=0; i<dx; i++){
1101 ma = *bmask.alpha;
1102 zero = ma ? op == DoutS : op == DinS;
1104 if(grey){
1105 if(zero)
1106 *bdst.grey = 0;
1107 bdst.grey += bdst.delta;
1108 }else{
1109 if(zero)
1110 *bdst.red = *bdst.grn = *bdst.blu = 0;
1111 bdst.red += bdst.delta;
1112 bdst.blu += bdst.delta;
1113 bdst.grn += bdst.delta;
1115 bmask.alpha += bmask.delta;
1116 if(bdst.alpha != &ones){
1117 if(zero)
1118 *bdst.alpha = 0;
1119 bdst.alpha += bdst.delta;
1122 return obdst;
1125 static Buffer
1126 boolcalc236789(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
1128 Buffer obdst;
1129 int fs, fd;
1130 int i, ma, da, zero;
1131 u32int s, t;
1133 obdst = bdst;
1134 zero = !(op&1);
1136 for(i=0; i<dx; i++){
1137 ma = *bmask.alpha;
1138 da = *bdst.alpha;
1139 fs = da;
1140 if(op&2)
1141 fs = 255-da;
1142 fd = 0;
1143 if(op&4)
1144 fd = 255;
1146 if(grey){
1147 if(ma)
1148 *bdst.grey = MUL(fs, *bsrc.grey, s)+MUL(fd, *bdst.grey, t);
1149 else if(zero)
1150 *bdst.grey = 0;
1151 bsrc.grey += bsrc.delta;
1152 bdst.grey += bdst.delta;
1153 }else{
1154 if(ma){
1155 *bdst.red = MUL(fs, *bsrc.red, s)+MUL(fd, *bdst.red, t);
1156 *bdst.grn = MUL(fs, *bsrc.grn, s)+MUL(fd, *bdst.grn, t);
1157 *bdst.blu = MUL(fs, *bsrc.blu, s)+MUL(fd, *bdst.blu, t);
1159 else if(zero)
1160 *bdst.red = *bdst.grn = *bdst.blu = 0;
1161 bsrc.red += bsrc.delta;
1162 bsrc.blu += bsrc.delta;
1163 bsrc.grn += bsrc.delta;
1164 bdst.red += bdst.delta;
1165 bdst.blu += bdst.delta;
1166 bdst.grn += bdst.delta;
1168 bmask.alpha += bmask.delta;
1169 if(bdst.alpha != &ones){
1170 if(ma)
1171 *bdst.alpha = fs+MUL(fd, da, t);
1172 else if(zero)
1173 *bdst.alpha = 0;
1174 bdst.alpha += bdst.delta;
1177 return obdst;
1180 static Buffer
1181 boolcalc1011(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
1183 Buffer obdst;
1184 int i, ma, zero;
1186 obdst = bdst;
1187 zero = !(op&1);
1189 for(i=0; i<dx; i++){
1190 ma = *bmask.alpha;
1192 if(grey){
1193 if(ma)
1194 *bdst.grey = *bsrc.grey;
1195 else if(zero)
1196 *bdst.grey = 0;
1197 bsrc.grey += bsrc.delta;
1198 bdst.grey += bdst.delta;
1199 }else{
1200 if(ma){
1201 *bdst.red = *bsrc.red;
1202 *bdst.grn = *bsrc.grn;
1203 *bdst.blu = *bsrc.blu;
1205 else if(zero)
1206 *bdst.red = *bdst.grn = *bdst.blu = 0;
1207 bsrc.red += bsrc.delta;
1208 bsrc.blu += bsrc.delta;
1209 bsrc.grn += bsrc.delta;
1210 bdst.red += bdst.delta;
1211 bdst.blu += bdst.delta;
1212 bdst.grn += bdst.delta;
1214 bmask.alpha += bmask.delta;
1215 if(bdst.alpha != &ones){
1216 if(ma)
1217 *bdst.alpha = 255;
1218 else if(zero)
1219 *bdst.alpha = 0;
1220 bdst.alpha += bdst.delta;
1223 return obdst;
1226 * Replicated cached scan line read. Call the function listed in the Param,
1227 * but cache the result so that for replicated images we only do the work once.
1229 static Buffer
1230 replread(Param *p, uchar *s, int y)
1232 Buffer *b;
1234 USED(s);
1235 b = &p->bcache[y];
1236 if((p->bfilled & (1<<y)) == 0){
1237 p->bfilled |= 1<<y;
1238 *b = p->replcall(p, p->bufbase+y*p->bufdelta, y);
1240 return *b;
1244 * Alpha reading function that simply relabels the grey pointer.
1246 static Buffer
1247 greymaskread(Param *p, uchar *buf, int y)
1249 Buffer b;
1251 b = p->greymaskcall(p, buf, y);
1252 b.alpha = b.grey;
1253 return b;
1256 #define DBG if(0)
1257 static Buffer
1258 readnbit(Param *p, uchar *buf, int y)
1260 Buffer b;
1261 Memimage *img;
1262 uchar *repl, *r, *w, *ow, bits;
1263 int i, n, sh, depth, x, dx, npack, nbits;
1265 b.rgba = (u32int*)buf;
1266 b.grey = w = buf;
1267 b.red = b.blu = b.grn = w;
1268 b.alpha = &ones;
1269 b.delta = 1;
1271 dx = p->dx;
1272 img = p->img;
1273 depth = img->depth;
1274 repl = &replbit[depth][0];
1275 npack = 8/depth;
1276 sh = 8-depth;
1278 /* copy from p->r.min.x until end of repl rectangle */
1279 x = p->r.min.x;
1280 n = dx;
1281 if(n > p->img->r.max.x - x)
1282 n = p->img->r.max.x - x;
1284 r = p->bytermin + y*p->bwidth;
1285 DBG print("readnbit dx %d %p=%p+%d*%d, *r=%d fetch %d ", dx, r, p->bytermin, y, p->bwidth, *r, n);
1286 bits = *r++;
1287 nbits = 8;
1288 if(i=x&(npack-1)){
1289 DBG print("throwaway %d...", i);
1290 bits <<= depth*i;
1291 nbits -= depth*i;
1293 for(i=0; i<n; i++){
1294 if(nbits == 0){
1295 DBG print("(%.2ux)...", *r);
1296 bits = *r++;
1297 nbits = 8;
1299 *w++ = repl[bits>>sh];
1300 DBG print("bit %x...", repl[bits>>sh]);
1301 bits <<= depth;
1302 nbits -= depth;
1304 dx -= n;
1305 if(dx == 0)
1306 return b;
1308 assert(x+i == p->img->r.max.x);
1310 /* copy from beginning of repl rectangle until where we were before. */
1311 x = p->img->r.min.x;
1312 n = dx;
1313 if(n > p->r.min.x - x)
1314 n = p->r.min.x - x;
1316 r = p->bytey0s + y*p->bwidth;
1317 DBG print("x=%d r=%p...", x, r);
1318 bits = *r++;
1319 nbits = 8;
1320 if(i=x&(npack-1)){
1321 bits <<= depth*i;
1322 nbits -= depth*i;
1324 DBG print("nbits=%d...", nbits);
1325 for(i=0; i<n; i++){
1326 if(nbits == 0){
1327 bits = *r++;
1328 nbits = 8;
1330 *w++ = repl[bits>>sh];
1331 DBG print("bit %x...", repl[bits>>sh]);
1332 bits <<= depth;
1333 nbits -= depth;
1334 DBG print("bits %x nbits %d...", bits, nbits);
1336 dx -= n;
1337 if(dx == 0)
1338 return b;
1340 assert(dx > 0);
1341 /* now we have exactly one full scan line: just replicate the buffer itself until we are done */
1342 ow = buf;
1343 while(dx--)
1344 *w++ = *ow++;
1346 return b;
1348 #undef DBG
1350 #define DBG if(0)
1351 static void
1352 writenbit(Param *p, uchar *w, Buffer src)
1354 uchar *r;
1355 u32int bits;
1356 int i, sh, depth, npack, nbits, x, ex;
1358 assert(src.grey != nil && src.delta == 1);
1360 x = p->r.min.x;
1361 ex = x+p->dx;
1362 depth = p->img->depth;
1363 npack = 8/depth;
1365 i=x&(npack-1);
1366 bits = i ? (*w >> (8-depth*i)) : 0;
1367 nbits = depth*i;
1368 sh = 8-depth;
1369 r = src.grey;
1371 for(; x<ex; x++){
1372 bits <<= depth;
1373 DBG print(" %x", *r);
1374 bits |= (*r++ >> sh);
1375 nbits += depth;
1376 if(nbits == 8){
1377 *w++ = bits;
1378 nbits = 0;
1382 if(nbits){
1383 sh = 8-nbits;
1384 bits <<= sh;
1385 bits |= *w & ((1<<sh)-1);
1386 *w = bits;
1388 DBG print("\n");
1389 return;
1391 #undef DBG
1393 static Buffer
1394 readcmap(Param *p, uchar *buf, int y)
1396 Buffer b;
1397 int a, convgrey, copyalpha, dx, i, m;
1398 uchar *q, *cmap, *begin, *end, *r, *w;
1400 begin = p->bytey0s + y*p->bwidth;
1401 r = p->bytermin + y*p->bwidth;
1402 end = p->bytey0e + y*p->bwidth;
1403 cmap = p->img->cmap->cmap2rgb;
1404 convgrey = p->convgrey;
1405 copyalpha = (p->img->flags&Falpha) ? 1 : 0;
1407 w = buf;
1408 dx = p->dx;
1409 if(copyalpha){
1410 b.alpha = buf++;
1411 a = p->img->shift[CAlpha]/8;
1412 m = p->img->shift[CMap]/8;
1413 for(i=0; i<dx; i++){
1414 *w++ = r[a];
1415 q = cmap+r[m]*3;
1416 r += 2;
1417 if(r == end)
1418 r = begin;
1419 if(convgrey){
1420 *w++ = RGB2K(q[0], q[1], q[2]);
1421 }else{
1422 *w++ = q[2]; /* blue */
1423 *w++ = q[1]; /* green */
1424 *w++ = q[0]; /* red */
1427 }else{
1428 b.alpha = &ones;
1429 for(i=0; i<dx; i++){
1430 q = cmap+*r++*3;
1431 if(r == end)
1432 r = begin;
1433 if(convgrey){
1434 *w++ = RGB2K(q[0], q[1], q[2]);
1435 }else{
1436 *w++ = q[2]; /* blue */
1437 *w++ = q[1]; /* green */
1438 *w++ = q[0]; /* red */
1443 b.rgba = (u32int*)(buf-copyalpha);
1445 if(convgrey){
1446 b.grey = buf;
1447 b.red = b.blu = b.grn = buf;
1448 b.delta = 1+copyalpha;
1449 }else{
1450 b.blu = buf;
1451 b.grn = buf+1;
1452 b.red = buf+2;
1453 b.grey = nil;
1454 b.delta = 3+copyalpha;
1456 return b;
1459 static void
1460 writecmap(Param *p, uchar *w, Buffer src)
1462 uchar *cmap, *red, *grn, *blu;
1463 int i, dx, delta;
1465 cmap = p->img->cmap->rgb2cmap;
1467 delta = src.delta;
1468 red= src.red;
1469 grn = src.grn;
1470 blu = src.blu;
1472 dx = p->dx;
1473 for(i=0; i<dx; i++, red+=delta, grn+=delta, blu+=delta)
1474 *w++ = cmap[(*red>>4)*256+(*grn>>4)*16+(*blu>>4)];
1477 #define DBG if(0)
1478 static Buffer
1479 readbyte(Param *p, uchar *buf, int y)
1481 Buffer b;
1482 Memimage *img;
1483 int dx, isgrey, convgrey, alphaonly, copyalpha, i, nb;
1484 uchar *begin, *end, *r, *w, *rrepl, *grepl, *brepl, *arepl, *krepl;
1485 uchar ured, ugrn, ublu;
1486 u32int u;
1488 img = p->img;
1489 begin = p->bytey0s + y*p->bwidth;
1490 r = p->bytermin + y*p->bwidth;
1491 end = p->bytey0e + y*p->bwidth;
1493 w = buf;
1494 dx = p->dx;
1495 nb = img->depth/8;
1497 convgrey = p->convgrey; /* convert rgb to grey */
1498 isgrey = img->flags&Fgrey;
1499 alphaonly = p->alphaonly;
1500 copyalpha = (img->flags&Falpha) ? 1 : 0;
1502 DBG print("copyalpha %d alphaonly %d convgrey %d isgrey %d\n", copyalpha, alphaonly, convgrey, isgrey);
1503 /* if we can, avoid processing everything */
1504 if(!(img->flags&Frepl) && !convgrey && (img->flags&Fbytes)){
1505 memset(&b, 0, sizeof b);
1506 if(p->needbuf){
1507 memmove(buf, r, dx*nb);
1508 r = buf;
1510 b.rgba = (u32int*)r;
1511 if(copyalpha)
1512 b.alpha = r+img->shift[CAlpha]/8;
1513 else
1514 b.alpha = &ones;
1515 if(isgrey){
1516 b.grey = r+img->shift[CGrey]/8;
1517 b.red = b.grn = b.blu = b.grey;
1518 }else{
1519 b.red = r+img->shift[CRed]/8;
1520 b.grn = r+img->shift[CGreen]/8;
1521 b.blu = r+img->shift[CBlue]/8;
1523 b.delta = nb;
1524 return b;
1527 DBG print("2\n");
1528 rrepl = replbit[img->nbits[CRed]];
1529 grepl = replbit[img->nbits[CGreen]];
1530 brepl = replbit[img->nbits[CBlue]];
1531 arepl = replbit[img->nbits[CAlpha]];
1532 krepl = replbit[img->nbits[CGrey]];
1534 for(i=0; i<dx; i++){
1535 u = r[0] | (r[1]<<8) | (r[2]<<16) | (r[3]<<24);
1536 if(copyalpha) {
1537 *w++ = arepl[(u>>img->shift[CAlpha]) & img->mask[CAlpha]];
1538 DBG print("a %x\n", w[-1]);
1541 if(isgrey)
1542 *w++ = krepl[(u >> img->shift[CGrey]) & img->mask[CGrey]];
1543 else if(!alphaonly){
1544 ured = rrepl[(u >> img->shift[CRed]) & img->mask[CRed]];
1545 ugrn = grepl[(u >> img->shift[CGreen]) & img->mask[CGreen]];
1546 ublu = brepl[(u >> img->shift[CBlue]) & img->mask[CBlue]];
1547 if(convgrey){
1548 DBG print("g %x %x %x\n", ured, ugrn, ublu);
1549 *w++ = RGB2K(ured, ugrn, ublu);
1550 DBG print("%x\n", w[-1]);
1551 }else{
1552 *w++ = brepl[(u >> img->shift[CBlue]) & img->mask[CBlue]];
1553 *w++ = grepl[(u >> img->shift[CGreen]) & img->mask[CGreen]];
1554 *w++ = rrepl[(u >> img->shift[CRed]) & img->mask[CRed]];
1557 r += nb;
1558 if(r == end)
1559 r = begin;
1562 b.alpha = copyalpha ? buf : &ones;
1563 b.rgba = (u32int*)buf;
1564 if(alphaonly){
1565 b.red = b.grn = b.blu = b.grey = nil;
1566 if(!copyalpha)
1567 b.rgba = nil;
1568 b.delta = 1;
1569 }else if(isgrey || convgrey){
1570 b.grey = buf+copyalpha;
1571 b.red = b.grn = b.blu = buf+copyalpha;
1572 b.delta = copyalpha+1;
1573 DBG print("alpha %x grey %x\n", b.alpha ? *b.alpha : 0xFF, *b.grey);
1574 }else{
1575 b.blu = buf+copyalpha;
1576 b.grn = buf+copyalpha+1;
1577 b.grey = nil;
1578 b.red = buf+copyalpha+2;
1579 b.delta = copyalpha+3;
1581 return b;
1583 #undef DBG
1585 #define DBG if(0)
1586 static void
1587 writebyte(Param *p, uchar *w, Buffer src)
1589 Memimage *img;
1590 int i, isalpha, isgrey, nb, delta, dx, adelta;
1591 uchar ff, *red, *grn, *blu, *grey, *alpha;
1592 u32int u, mask;
1594 img = p->img;
1596 red = src.red;
1597 grn = src.grn;
1598 blu = src.blu;
1599 alpha = src.alpha;
1600 delta = src.delta;
1601 grey = src.grey;
1602 dx = p->dx;
1604 nb = img->depth/8;
1605 mask = (nb==4) ? 0 : ~((1<<img->depth)-1);
1607 isalpha = img->flags&Falpha;
1608 isgrey = img->flags&Fgrey;
1609 adelta = src.delta;
1611 if(isalpha && (alpha == nil || alpha == &ones)){
1612 ff = 0xFF;
1613 alpha = &ff;
1614 adelta = 0;
1617 for(i=0; i<dx; i++){
1618 u = w[0] | (w[1]<<8) | (w[2]<<16) | (w[3]<<24);
1619 DBG print("u %.8lux...", u);
1620 u &= mask;
1621 DBG print("&mask %.8lux...", u);
1622 if(isgrey){
1623 u |= ((*grey >> (8-img->nbits[CGrey])) & img->mask[CGrey]) << img->shift[CGrey];
1624 DBG print("|grey %.8lux...", u);
1625 grey += delta;
1626 }else{
1627 u |= ((*red >> (8-img->nbits[CRed])) & img->mask[CRed]) << img->shift[CRed];
1628 u |= ((*grn >> (8-img->nbits[CGreen])) & img->mask[CGreen]) << img->shift[CGreen];
1629 u |= ((*blu >> (8-img->nbits[CBlue])) & img->mask[CBlue]) << img->shift[CBlue];
1630 red += delta;
1631 grn += delta;
1632 blu += delta;
1633 DBG print("|rgb %.8lux...", u);
1636 if(isalpha){
1637 u |= ((*alpha >> (8-img->nbits[CAlpha])) & img->mask[CAlpha]) << img->shift[CAlpha];
1638 alpha += adelta;
1639 DBG print("|alpha %.8lux...", u);
1642 w[0] = u;
1643 w[1] = u>>8;
1644 w[2] = u>>16;
1645 w[3] = u>>24;
1646 w += nb;
1649 #undef DBG
1651 static Readfn*
1652 readfn(Memimage *img)
1654 if(img->depth < 8)
1655 return readnbit;
1656 if(img->nbits[CMap] == 8)
1657 return readcmap;
1658 return readbyte;
1661 static Readfn*
1662 readalphafn(Memimage *m)
1664 USED(m);
1665 return readbyte;
1668 static Writefn*
1669 writefn(Memimage *img)
1671 if(img->depth < 8)
1672 return writenbit;
1673 if(img->chan == CMAP8)
1674 return writecmap;
1675 return writebyte;
1678 static void
1679 nullwrite(Param *p, uchar *s, Buffer b)
1681 USED(p);
1682 USED(s);
1685 static Buffer
1686 readptr(Param *p, uchar *s, int y)
1688 Buffer b;
1689 uchar *q;
1691 USED(s);
1692 q = p->bytermin + y*p->bwidth;
1693 b.red = q; /* ptr to data */
1694 b.grn = b.blu = b.grey = b.alpha = nil;
1695 b.rgba = (u32int*)q;
1696 b.delta = p->img->depth/8;
1697 return b;
1700 static Buffer
1701 boolmemmove(Buffer bdst, Buffer bsrc, Buffer b1, int dx, int i, int o)
1703 USED(i);
1704 USED(o);
1705 memmove(bdst.red, bsrc.red, dx*bdst.delta);
1706 return bdst;
1709 static Buffer
1710 boolcopy8(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int i, int o)
1712 uchar *m, *r, *w, *ew;
1714 USED(i);
1715 USED(o);
1716 m = bmask.grey;
1717 w = bdst.red;
1718 r = bsrc.red;
1719 ew = w+dx;
1720 for(; w < ew; w++,r++)
1721 if(*m++)
1722 *w = *r;
1723 return bdst; /* not used */
1726 static Buffer
1727 boolcopy16(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int i, int o)
1729 uchar *m;
1730 ushort *r, *w, *ew;
1732 USED(i);
1733 USED(o);
1734 m = bmask.grey;
1735 w = (ushort*)bdst.red;
1736 r = (ushort*)bsrc.red;
1737 ew = w+dx;
1738 for(; w < ew; w++,r++)
1739 if(*m++)
1740 *w = *r;
1741 return bdst; /* not used */
1744 static Buffer
1745 boolcopy24(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int i, int o)
1747 uchar *m;
1748 uchar *r, *w, *ew;
1750 USED(i);
1751 USED(o);
1752 m = bmask.grey;
1753 w = bdst.red;
1754 r = bsrc.red;
1755 ew = w+dx*3;
1756 while(w < ew){
1757 if(*m++){
1758 *w++ = *r++;
1759 *w++ = *r++;
1760 *w++ = *r++;
1761 }else{
1762 w += 3;
1763 r += 3;
1766 return bdst; /* not used */
1769 static Buffer
1770 boolcopy32(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int i, int o)
1772 uchar *m;
1773 u32int *r, *w, *ew;
1775 USED(i);
1776 USED(o);
1777 m = bmask.grey;
1778 w = (u32int*)bdst.red;
1779 r = (u32int*)bsrc.red;
1780 ew = w+dx;
1781 for(; w < ew; w++,r++)
1782 if(*m++)
1783 *w = *r;
1784 return bdst; /* not used */
1787 static Buffer
1788 genconv(Param *p, uchar *buf, int y)
1790 Buffer b;
1791 int nb;
1792 uchar *r, *w, *ew;
1794 /* read from source into RGB format in convbuf */
1795 b = p->convreadcall(p, p->convbuf, y);
1797 /* write RGB format into dst format in buf */
1798 p->convwritecall(p->convdpar, buf, b);
1800 if(p->convdx){
1801 nb = p->convdpar->img->depth/8;
1802 r = buf;
1803 w = buf+nb*p->dx;
1804 ew = buf+nb*p->convdx;
1805 while(w<ew)
1806 *w++ = *r++;
1809 b.red = buf;
1810 b.blu = b.grn = b.grey = b.alpha = nil;
1811 b.rgba = (u32int*)buf;
1812 b.delta = 0;
1814 return b;
1817 static Readfn*
1818 convfn(Memimage *dst, Param *dpar, Memimage *src, Param *spar)
1820 if(dst->chan == src->chan && !(src->flags&Frepl)){
1821 //if(drawdebug) iprint("readptr...");
1822 return readptr;
1825 if(dst->chan==CMAP8 && (src->chan==GREY1||src->chan==GREY2||src->chan==GREY4)){
1826 /* cheat because we know the replicated value is exactly the color map entry. */
1827 //if(drawdebug) iprint("Readnbit...");
1828 return readnbit;
1831 spar->convreadcall = readfn(src);
1832 spar->convwritecall = writefn(dst);
1833 spar->convdpar = dpar;
1835 /* allocate a conversion buffer */
1836 spar->convbufoff = ndrawbuf;
1837 ndrawbuf += spar->dx*4;
1839 if(spar->dx > Dx(spar->img->r)){
1840 spar->convdx = spar->dx;
1841 spar->dx = Dx(spar->img->r);
1844 //if(drawdebug) iprint("genconv...");
1845 return genconv;
1849 * Do NOT call this directly. pixelbits is a wrapper
1850 * around this that fetches the bits from the X server
1851 * when necessary.
1853 u32int
1854 _pixelbits(Memimage *i, Point pt)
1856 uchar *p;
1857 u32int val;
1858 int off, bpp, npack;
1860 val = 0;
1861 p = byteaddr(i, pt);
1862 switch(bpp=i->depth){
1863 case 1:
1864 case 2:
1865 case 4:
1866 npack = 8/bpp;
1867 off = pt.x%npack;
1868 val = p[0] >> bpp*(npack-1-off);
1869 val &= (1<<bpp)-1;
1870 break;
1871 case 8:
1872 val = p[0];
1873 break;
1874 case 16:
1875 val = p[0]|(p[1]<<8);
1876 break;
1877 case 24:
1878 val = p[0]|(p[1]<<8)|(p[2]<<16);
1879 break;
1880 case 32:
1881 val = p[0]|(p[1]<<8)|(p[2]<<16)|(p[3]<<24);
1882 break;
1884 while(bpp<32){
1885 val |= val<<bpp;
1886 bpp *= 2;
1888 return val;
1891 static Calcfn*
1892 boolcopyfn(Memimage *img, Memimage *mask)
1894 if(mask->flags&Frepl && Dx(mask->r)==1 && Dy(mask->r)==1 && pixelbits(mask, mask->r.min)==~0)
1895 return boolmemmove;
1897 switch(img->depth){
1898 case 8:
1899 return boolcopy8;
1900 case 16:
1901 return boolcopy16;
1902 case 24:
1903 return boolcopy24;
1904 case 32:
1905 return boolcopy32;
1906 default:
1907 assert(0 /* boolcopyfn */);
1909 return 0;
1913 * Optimized draw for filling and scrolling; uses memset and memmove.
1915 static void
1916 memsets(void *vp, ushort val, int n)
1918 ushort *p, *ep;
1920 p = vp;
1921 ep = p+n;
1922 while(p<ep)
1923 *p++ = val;
1926 static void
1927 memsetl(void *vp, u32int val, int n)
1929 u32int *p, *ep;
1931 p = vp;
1932 ep = p+n;
1933 while(p<ep)
1934 *p++ = val;
1937 static void
1938 memset24(void *vp, u32int val, int n)
1940 uchar *p, *ep;
1941 uchar a,b,c;
1943 p = vp;
1944 ep = p+3*n;
1945 a = val;
1946 b = val>>8;
1947 c = val>>16;
1948 while(p<ep){
1949 *p++ = a;
1950 *p++ = b;
1951 *p++ = c;
1955 u32int
1956 _imgtorgba(Memimage *img, u32int val)
1958 uchar r, g, b, a;
1959 int nb, ov, v;
1960 u32int chan;
1961 uchar *p;
1963 a = 0xFF;
1964 r = g = b = 0xAA; /* garbage */
1965 for(chan=img->chan; chan; chan>>=8){
1966 nb = NBITS(chan);
1967 ov = v = val&((1<<nb)-1);
1968 val >>= nb;
1970 while(nb < 8){
1971 v |= v<<nb;
1972 nb *= 2;
1974 v >>= (nb-8);
1976 switch(TYPE(chan)){
1977 case CRed:
1978 r = v;
1979 break;
1980 case CGreen:
1981 g = v;
1982 break;
1983 case CBlue:
1984 b = v;
1985 break;
1986 case CAlpha:
1987 a = v;
1988 break;
1989 case CGrey:
1990 r = g = b = v;
1991 break;
1992 case CMap:
1993 p = img->cmap->cmap2rgb+3*ov;
1994 r = *p++;
1995 g = *p++;
1996 b = *p;
1997 break;
2000 return (r<<24)|(g<<16)|(b<<8)|a;
2003 u32int
2004 _rgbatoimg(Memimage *img, u32int rgba)
2006 u32int chan;
2007 int d, nb;
2008 u32int v;
2009 uchar *p, r, g, b, a, m;
2011 v = 0;
2012 r = rgba>>24;
2013 g = rgba>>16;
2014 b = rgba>>8;
2015 a = rgba;
2016 d = 0;
2017 for(chan=img->chan; chan; chan>>=8){
2018 nb = NBITS(chan);
2019 switch(TYPE(chan)){
2020 case CRed:
2021 v |= (r>>(8-nb))<<d;
2022 break;
2023 case CGreen:
2024 v |= (g>>(8-nb))<<d;
2025 break;
2026 case CBlue:
2027 v |= (b>>(8-nb))<<d;
2028 break;
2029 case CAlpha:
2030 v |= (a>>(8-nb))<<d;
2031 break;
2032 case CMap:
2033 p = img->cmap->rgb2cmap;
2034 m = p[(r>>4)*256+(g>>4)*16+(b>>4)];
2035 v |= (m>>(8-nb))<<d;
2036 break;
2037 case CGrey:
2038 m = RGB2K(r,g,b);
2039 v |= (m>>(8-nb))<<d;
2040 break;
2042 d += nb;
2044 // print("rgba2img %.8lux = %.*lux\n", rgba, 2*d/8, v);
2045 return v;
2048 #define DBG if(0)
2049 static int
2050 memoptdraw(Memdrawparam *par)
2052 int m, y, dy, dx, op;
2053 u32int v;
2054 Memimage *src;
2055 Memimage *dst;
2057 dx = Dx(par->r);
2058 dy = Dy(par->r);
2059 src = par->src;
2060 dst = par->dst;
2061 op = par->op;
2063 DBG print("state %lux mval %lux dd %d\n", par->state, par->mval, dst->depth);
2065 * If we have an opaque mask and source is one opaque pixel we can convert to the
2066 * destination format and just replicate with memset.
2068 m = Simplesrc|Simplemask|Fullmask;
2069 if((par->state&m)==m && (par->srgba&0xFF) == 0xFF && (op ==S || op == SoverD)){
2070 uchar *dp, p[4];
2071 int d, dwid, ppb, np, nb;
2072 uchar lm, rm;
2074 DBG print("memopt, dst %p, dst->data->bdata %p\n", dst, dst->data->bdata);
2075 dwid = dst->width*sizeof(u32int);
2076 dp = byteaddr(dst, par->r.min);
2077 v = par->sdval;
2078 DBG print("sdval %lud, depth %d\n", v, dst->depth);
2079 switch(dst->depth){
2080 case 1:
2081 case 2:
2082 case 4:
2083 for(d=dst->depth; d<8; d*=2)
2084 v |= (v<<d);
2085 ppb = 8/dst->depth; /* pixels per byte */
2086 m = ppb-1;
2087 /* left edge */
2088 np = par->r.min.x&m; /* no. pixels unused on left side of word */
2089 dx -= (ppb-np);
2090 nb = 8 - np * dst->depth; /* no. bits used on right side of word */
2091 lm = (1<<nb)-1;
2092 DBG print("np %d x %d nb %d lm %ux ppb %d m %ux\n", np, par->r.min.x, nb, lm, ppb, m);
2094 /* right edge */
2095 np = par->r.max.x&m; /* no. pixels used on left side of word */
2096 dx -= np;
2097 nb = 8 - np * dst->depth; /* no. bits unused on right side of word */
2098 rm = ~((1<<nb)-1);
2099 DBG print("np %d x %d nb %d rm %ux ppb %d m %ux\n", np, par->r.max.x, nb, rm, ppb, m);
2101 DBG print("dx %d Dx %d\n", dx, Dx(par->r));
2102 /* lm, rm are masks that are 1 where we should touch the bits */
2103 if(dx < 0){ /* just one byte */
2104 lm &= rm;
2105 for(y=0; y<dy; y++, dp+=dwid)
2106 *dp ^= (v ^ *dp) & lm;
2107 }else if(dx == 0){ /* no full bytes */
2108 if(lm)
2109 dwid--;
2111 for(y=0; y<dy; y++, dp+=dwid){
2112 if(lm){
2113 DBG print("dp %p v %lux lm %ux (v ^ *dp) & lm %lux\n", dp, v, lm, (v^*dp)&lm);
2114 *dp ^= (v ^ *dp) & lm;
2115 dp++;
2117 *dp ^= (v ^ *dp) & rm;
2119 }else{ /* full bytes in middle */
2120 dx /= ppb;
2121 if(lm)
2122 dwid--;
2123 dwid -= dx;
2125 for(y=0; y<dy; y++, dp+=dwid){
2126 if(lm){
2127 *dp ^= (v ^ *dp) & lm;
2128 dp++;
2130 memset(dp, v, dx);
2131 dp += dx;
2132 *dp ^= (v ^ *dp) & rm;
2135 return 1;
2136 case 8:
2137 for(y=0; y<dy; y++, dp+=dwid)
2138 memset(dp, v, dx);
2139 return 1;
2140 case 16:
2141 p[0] = v; /* make little endian */
2142 p[1] = v>>8;
2143 v = *(ushort*)p;
2144 DBG print("dp=%p; dx=%d; for(y=0; y<%d; y++, dp+=%d)\nmemsets(dp, v, dx);\n",
2145 dp, dx, dy, dwid);
2146 for(y=0; y<dy; y++, dp+=dwid)
2147 memsets(dp, v, dx);
2148 return 1;
2149 case 24:
2150 for(y=0; y<dy; y++, dp+=dwid)
2151 memset24(dp, v, dx);
2152 return 1;
2153 case 32:
2154 p[0] = v; /* make little endian */
2155 p[1] = v>>8;
2156 p[2] = v>>16;
2157 p[3] = v>>24;
2158 v = *(u32int*)p;
2159 for(y=0; y<dy; y++, dp+=dwid)
2160 memsetl(dp, v, dx);
2161 return 1;
2162 default:
2163 assert(0 /* bad dest depth in memoptdraw */);
2168 * If no source alpha, an opaque mask, we can just copy the
2169 * source onto the destination. If the channels are the same and
2170 * the source is not replicated, memmove suffices.
2172 m = Simplemask|Fullmask;
2173 if((par->state&(m|Replsrc))==m && src->depth >= 8
2174 && src->chan == dst->chan && !(src->flags&Falpha) && (op == S || op == SoverD)){
2175 uchar *sp, *dp;
2176 long swid, dwid, nb;
2177 int dir;
2179 if(src->data == dst->data && byteaddr(dst, par->r.min) > byteaddr(src, par->sr.min))
2180 dir = -1;
2181 else
2182 dir = 1;
2184 swid = src->width*sizeof(u32int);
2185 dwid = dst->width*sizeof(u32int);
2186 sp = byteaddr(src, par->sr.min);
2187 dp = byteaddr(dst, par->r.min);
2188 if(dir == -1){
2189 sp += (dy-1)*swid;
2190 dp += (dy-1)*dwid;
2191 swid = -swid;
2192 dwid = -dwid;
2194 nb = (dx*src->depth)/8;
2195 for(y=0; y<dy; y++, sp+=swid, dp+=dwid)
2196 memmove(dp, sp, nb);
2197 return 1;
2201 * If we have a 1-bit mask, 1-bit source, and 1-bit destination, and
2202 * they're all bit aligned, we can just use bit operators. This happens
2203 * when we're manipulating boolean masks, e.g. in the arc code.
2205 if((par->state&(Simplemask|Simplesrc|Replmask|Replsrc))==0
2206 && dst->chan==GREY1 && src->chan==GREY1 && par->mask->chan==GREY1
2207 && (par->r.min.x&7)==(par->sr.min.x&7) && (par->r.min.x&7)==(par->mr.min.x&7)){
2208 uchar *sp, *dp, *mp;
2209 uchar lm, rm;
2210 long swid, dwid, mwid;
2211 int i, x, dir;
2213 sp = byteaddr(src, par->sr.min);
2214 dp = byteaddr(dst, par->r.min);
2215 mp = byteaddr(par->mask, par->mr.min);
2216 swid = src->width*sizeof(u32int);
2217 dwid = dst->width*sizeof(u32int);
2218 mwid = par->mask->width*sizeof(u32int);
2220 if(src->data == dst->data && byteaddr(dst, par->r.min) > byteaddr(src, par->sr.min)){
2221 dir = -1;
2222 }else
2223 dir = 1;
2225 lm = 0xFF>>(par->r.min.x&7);
2226 rm = 0xFF<<(8-(par->r.max.x&7));
2227 dx -= (8-(par->r.min.x&7)) + (par->r.max.x&7);
2229 if(dx < 0){ /* one byte wide */
2230 lm &= rm;
2231 if(dir == -1){
2232 dp += dwid*(dy-1);
2233 sp += swid*(dy-1);
2234 mp += mwid*(dy-1);
2235 dwid = -dwid;
2236 swid = -swid;
2237 mwid = -mwid;
2239 for(y=0; y<dy; y++){
2240 *dp ^= (*dp ^ *sp) & *mp & lm;
2241 dp += dwid;
2242 sp += swid;
2243 mp += mwid;
2245 return 1;
2248 dx /= 8;
2249 if(dir == 1){
2250 i = (lm!=0)+dx+(rm!=0);
2251 mwid -= i;
2252 swid -= i;
2253 dwid -= i;
2254 for(y=0; y<dy; y++, dp+=dwid, sp+=swid, mp+=mwid){
2255 if(lm){
2256 *dp ^= (*dp ^ *sp++) & *mp++ & lm;
2257 dp++;
2259 for(x=0; x<dx; x++){
2260 *dp ^= (*dp ^ *sp++) & *mp++;
2261 dp++;
2263 if(rm){
2264 *dp ^= (*dp ^ *sp++) & *mp++ & rm;
2265 dp++;
2268 return 1;
2269 }else{
2270 /* dir == -1 */
2271 i = (lm!=0)+dx+(rm!=0);
2272 dp += dwid*(dy-1)+i-1;
2273 sp += swid*(dy-1)+i-1;
2274 mp += mwid*(dy-1)+i-1;
2275 dwid = -dwid+i;
2276 swid = -swid+i;
2277 mwid = -mwid+i;
2278 for(y=0; y<dy; y++, dp+=dwid, sp+=swid, mp+=mwid){
2279 if(rm){
2280 *dp ^= (*dp ^ *sp--) & *mp-- & rm;
2281 dp--;
2283 for(x=0; x<dx; x++){
2284 *dp ^= (*dp ^ *sp--) & *mp--;
2285 dp--;
2287 if(lm){
2288 *dp ^= (*dp ^ *sp--) & *mp-- & lm;
2289 dp--;
2293 return 1;
2295 return 0;
2297 #undef DBG
2300 * Boolean character drawing.
2301 * Solid opaque color through a 1-bit greyscale mask.
2303 #define DBG if(0)
2304 static int
2305 chardraw(Memdrawparam *par)
2307 u32int bits;
2308 int i, ddepth, dy, dx, x, bx, ex, y, npack, bsh, depth, op;
2309 u32int v, maskwid, dstwid;
2310 uchar *wp, *rp, *q, *wc;
2311 ushort *ws;
2312 u32int *wl;
2313 uchar sp[4];
2314 Rectangle r, mr;
2315 Memimage *mask, *src, *dst;
2317 if(0) if(drawdebug) iprint("chardraw? mf %lux md %d sf %lux dxs %d dys %d dd %d ddat %p sdat %p\n",
2318 par->mask->flags, par->mask->depth, par->src->flags,
2319 Dx(par->src->r), Dy(par->src->r), par->dst->depth, par->dst->data, par->src->data);
2321 mask = par->mask;
2322 src = par->src;
2323 dst = par->dst;
2324 r = par->r;
2325 mr = par->mr;
2326 op = par->op;
2328 if((par->state&(Replsrc|Simplesrc|Replmask)) != (Replsrc|Simplesrc)
2329 || mask->depth != 1 || src->flags&Falpha || dst->depth<8 || dst->data==src->data
2330 || op != SoverD)
2331 return 0;
2333 //if(drawdebug) iprint("chardraw...");
2335 depth = mask->depth;
2336 maskwid = mask->width*sizeof(u32int);
2337 rp = byteaddr(mask, mr.min);
2338 npack = 8/depth;
2339 bsh = (mr.min.x % npack) * depth;
2341 wp = byteaddr(dst, r.min);
2342 dstwid = dst->width*sizeof(u32int);
2343 DBG print("bsh %d\n", bsh);
2344 dy = Dy(r);
2345 dx = Dx(r);
2347 ddepth = dst->depth;
2350 * for loop counts from bsh to bsh+dx
2352 * we want the bottom bits to be the amount
2353 * to shift the pixels down, so for n≡0 (mod 8) we want
2354 * bottom bits 7. for n≡1, 6, etc.
2355 * the bits come from -n-1.
2358 bx = -bsh-1;
2359 ex = -bsh-1-dx;
2360 SET(bits);
2361 v = par->sdval;
2363 /* make little endian */
2364 sp[0] = v;
2365 sp[1] = v>>8;
2366 sp[2] = v>>16;
2367 sp[3] = v>>24;
2369 //print("sp %x %x %x %x\n", sp[0], sp[1], sp[2], sp[3]);
2370 for(y=0; y<dy; y++, rp+=maskwid, wp+=dstwid){
2371 q = rp;
2372 if(bsh)
2373 bits = *q++;
2374 switch(ddepth){
2375 case 8:
2376 //if(drawdebug) iprint("8loop...");
2377 wc = wp;
2378 for(x=bx; x>ex; x--, wc++){
2379 i = x&7;
2380 if(i == 8-1)
2381 bits = *q++;
2382 DBG print("bits %lux sh %d...", bits, i);
2383 if((bits>>i)&1)
2384 *wc = v;
2386 break;
2387 case 16:
2388 ws = (ushort*)wp;
2389 v = *(ushort*)sp;
2390 for(x=bx; x>ex; x--, ws++){
2391 i = x&7;
2392 if(i == 8-1)
2393 bits = *q++;
2394 DBG print("bits %lux sh %d...", bits, i);
2395 if((bits>>i)&1)
2396 *ws = v;
2398 break;
2399 case 24:
2400 wc = wp;
2401 for(x=bx; x>ex; x--, wc+=3){
2402 i = x&7;
2403 if(i == 8-1)
2404 bits = *q++;
2405 DBG print("bits %lux sh %d...", bits, i);
2406 if((bits>>i)&1){
2407 wc[0] = sp[0];
2408 wc[1] = sp[1];
2409 wc[2] = sp[2];
2412 break;
2413 case 32:
2414 wl = (u32int*)wp;
2415 v = *(u32int*)sp;
2416 for(x=bx; x>ex; x--, wl++){
2417 i = x&7;
2418 if(i == 8-1)
2419 bits = *q++;
2420 DBG iprint("bits %lux sh %d...", bits, i);
2421 if((bits>>i)&1)
2422 *wl = v;
2424 break;
2428 DBG print("\n");
2429 return 1;
2431 #undef DBG
2435 * Fill entire byte with replicated (if necessary) copy of source pixel,
2436 * assuming destination ldepth is >= source ldepth.
2438 * This code is just plain wrong for >8bpp.
2440 u32int
2441 membyteval(Memimage *src)
2443 int i, val, bpp;
2444 uchar uc;
2446 unloadmemimage(src, src->r, &uc, 1);
2447 bpp = src->depth;
2448 uc <<= (src->r.min.x&(7/src->depth))*src->depth;
2449 uc &= ~(0xFF>>bpp);
2450 * pixel value is now in high part of byte. repeat throughout byte
2451 val = uc;
2452 for(i=bpp; i<8; i<<=1)
2453 val |= val>>i;
2454 return val;
2459 void
2460 _memfillcolor(Memimage *i, u32int val)
2462 u32int bits;
2463 int d, y;
2464 uchar p[4];
2466 if(val == DNofill)
2467 return;
2469 bits = _rgbatoimg(i, val);
2470 switch(i->depth){
2471 case 24: /* 24-bit images suck */
2472 for(y=i->r.min.y; y<i->r.max.y; y++)
2473 memset24(byteaddr(i, Pt(i->r.min.x, y)), bits, Dx(i->r));
2474 break;
2475 default: /* 1, 2, 4, 8, 16, 32 */
2476 for(d=i->depth; d<32; d*=2)
2477 bits = (bits << d) | bits;
2478 p[0] = bits; /* make little endian */
2479 p[1] = bits>>8;
2480 p[2] = bits>>16;
2481 p[3] = bits>>24;
2482 bits = *(u32int*)p;
2483 memsetl(wordaddr(i, i->r.min), bits, i->width*Dy(i->r));
2484 break;