Blob


1 #include <u.h>
2 #include <libc.h>
3 #include <bio.h>
4 #include <avl.h>
6 /*
7 * In-memory database stored as self-balancing AVL tree.
8 * See Lewis & Denenberg, Data Structures and Their Algorithms.
9 */
11 static void
12 singleleft(Avl **tp, Avl *p)
13 {
14 int l, r2;
15 Avl *a, *c;
17 a = *tp;
18 c = a->n[1];
20 r2 = c->bal;
21 l = (r2 > 0? r2: 0)+1 - a->bal;
23 if((a->n[1] = c->n[0]) != nil)
24 a->n[1]->p = a;
26 if((c->n[0] = a) != nil)
27 c->n[0]->p = c;
29 if((*tp = c) != nil)
30 (*tp)->p = p;
32 a->bal = -l;
33 c->bal = r2 - ((l > 0? l: 0)+1);
35 }
37 static void
38 singleright(Avl **tp, Avl *p)
39 {
40 int l2, r;
41 Avl *a, *c;
43 a = *tp;
44 c = a->n[0];
45 l2 = - c->bal;
46 r = a->bal + ((l2 > 0? l2: 0)+1);
48 if((a->n[0] = c->n[1]) != nil)
49 a->n[0]->p = a;
51 if((c->n[1] = a) != nil)
52 c->n[1]->p = c;
54 if((*tp = c) != nil)
55 (*tp)->p = p;
57 a->bal = r;
58 c->bal = ((r > 0? r: 0)+1) - l2;
59 }
61 static void
62 doublerightleft(Avl **tp, Avl *p)
63 {
64 singleright(&(*tp)->n[1], *tp);
65 singleleft(tp, p);
66 }
68 static void
69 doubleleftright(Avl **tp, Avl *p)
70 {
71 singleleft(&(*tp)->n[0], *tp);
72 singleright(tp, p);
73 }
75 static void
76 balance(Avl **tp, Avl *p)
77 {
78 switch((*tp)->bal){
79 case -2:
80 if((*tp)->n[0]->bal <= 0)
81 singleright(tp, p);
82 else if((*tp)->n[0]->bal == 1)
83 doubleleftright(tp, p);
84 else
85 assert(0);
86 break;
88 case 2:
89 if((*tp)->n[1]->bal >= 0)
90 singleleft(tp, p);
91 else if((*tp)->n[1]->bal == -1)
92 doublerightleft(tp, p);
93 else
94 assert(0);
95 break;
96 }
97 }
99 static int
100 canoncmp(int cmp)
102 if(cmp < 0)
103 return -1;
104 else if(cmp > 0)
105 return 1;
106 return 0;
109 static int
110 _insertavl(Avl **tp, Avl *p, Avl *r, int (*cmp)(Avl*,Avl*), Avl **rfree)
112 int i, ob;
114 if(*tp == nil){
115 r->bal = 0;
116 r->n[0] = nil;
117 r->n[1] = nil;
118 r->p = p;
119 *tp = r;
120 return 1;
122 ob = (*tp)->bal;
123 if((i = canoncmp(cmp(r, *tp))) != 0){
124 (*tp)->bal += i * _insertavl(&(*tp)->n[(i+1)/2], *tp, r, cmp,
125 rfree);
126 balance(tp, p);
127 return ob == 0 && (*tp)->bal != 0;
130 /* install new entry */
131 *rfree = *tp; /* save old node for freeing */
132 *tp = r; /* insert new node */
133 **tp = **rfree; /* copy old node's Avl contents */
134 if(r->n[0]) /* fix node's children's parent pointers */
135 r->n[0]->p = r;
136 if(r->n[1])
137 r->n[1]->p = r;
139 return 0;
142 static int
143 successor(Avl **tp, Avl *p, Avl **r)
145 int ob;
147 if((*tp)->n[0] == nil){
148 *r = *tp;
149 *tp = (*r)->n[1];
150 if(*tp)
151 (*tp)->p = p;
152 return -1;
154 ob = (*tp)->bal;
155 (*tp)->bal -= successor(&(*tp)->n[0], *tp, r);
156 balance(tp, p);
157 return -(ob != 0 && (*tp)->bal == 0);
160 static int
161 _deleteavl(Avl **tp, Avl *p, Avl *rx, int(*cmp)(Avl*,Avl*), Avl **del,
162 void (*predel)(Avl*, void*), void *arg)
164 int i, ob;
165 Avl *r, *or;
167 if(*tp == nil)
168 return 0;
170 ob = (*tp)->bal;
171 if((i=canoncmp(cmp(rx, *tp))) != 0){
172 (*tp)->bal += i * _deleteavl(&(*tp)->n[(i+1)/2], *tp, rx, cmp,
173 del, predel, arg);
174 balance(tp, p);
175 return -(ob != 0 && (*tp)->bal == 0);
178 if(predel)
179 (*predel)(*tp, arg);
181 or = *tp;
182 if(or->n[i=0] == nil || or->n[i=1] == nil){
183 *tp = or->n[1-i];
184 if(*tp)
185 (*tp)->p = p;
186 *del = or;
187 return -1;
190 /* deleting node with two kids, find successor */
191 or->bal += successor(&or->n[1], or, &r);
192 r->bal = or->bal;
193 r->n[0] = or->n[0];
194 r->n[1] = or->n[1];
195 *tp = r;
196 (*tp)->p = p;
197 /* node has changed; fix children's parent pointers */
198 if(r->n[0])
199 r->n[0]->p = r;
200 if(r->n[1])
201 r->n[1]->p = r;
202 *del = or;
203 balance(tp, p);
204 return -(ob != 0 && (*tp)->bal == 0);
207 /*
208 static void
209 checkparents(Avl *a, Avl *p)
211 if(a == nil)
212 return;
213 if(a->p != p)
214 print("bad parent\n");
215 checkparents(a->n[0], a);
216 checkparents(a->n[1], a);
218 */
220 struct Avltree
222 Avl *root;
223 int (*cmp)(Avl*, Avl*);
224 Avlwalk *walks;
225 };
226 struct Avlwalk
228 int started;
229 int moved;
230 Avlwalk *next;
231 Avltree *tree;
232 Avl *node;
233 };
235 Avltree*
236 mkavltree(int (*cmp)(Avl*, Avl*))
238 Avltree *t;
240 t = malloc(sizeof *t);
241 if(t == nil)
242 return nil;
243 memset(t, 0, sizeof *t);
244 t->cmp = cmp;
245 return t;
248 void
249 insertavl(Avltree *t, Avl *new, Avl **oldp)
251 *oldp = nil;
252 _insertavl(&t->root, nil, new, t->cmp, oldp);
255 static Avl*
256 findpredecessor(Avl *a)
258 if(a == nil)
259 return nil;
261 if(a->n[0] != nil){
262 /* predecessor is rightmost descendant of left child */
263 for(a = a->n[0]; a->n[1]; a = a->n[1])
265 return a;
266 }else{
267 /* we're at a leaf, successor is a parent we enter from the right */
268 while(a->p && a->p->n[0] == a)
269 a = a->p;
270 return a->p;
274 static Avl*
275 findsuccessor(Avl *a)
277 if(a == nil)
278 return nil;
280 if(a->n[1] != nil){
281 /* successor is leftmost descendant of right child */
282 for(a = a->n[1]; a->n[0]; a = a->n[0])
284 return a;
285 }else{
286 /* we're at a leaf, successor is a parent we enter from the left going up */
287 while(a->p && a->p->n[1] == a)
288 a = a->p;
289 return a->p;
293 static Avl*
294 _lookupavl(Avl *t, Avl *r, int (*cmp)(Avl*,Avl*), int neighbor)
296 int i;
297 Avl *p;
299 p = nil;
300 if(t == nil)
301 return nil;
302 do{
303 assert(t->p == p);
304 if((i = canoncmp(cmp(r, t))) == 0)
305 return t;
306 p = t;
307 t = t->n[(i+1)/2];
308 }while(t);
309 if(neighbor == 0)
310 return nil;
311 if(neighbor < 0)
312 return i > 0 ? p : findpredecessor(p);
313 return i < 0 ? p : findsuccessor(p);
316 Avl*
317 searchavl(Avltree *t, Avl *key, int neighbor)
319 return _lookupavl(t->root, key, t->cmp, neighbor);
322 Avl*
323 lookupavl(Avltree *t, Avl *key)
325 return _lookupavl(t->root, key, t->cmp, 0);
328 static void
329 walkdel(Avl *a, void *v)
331 Avl *p;
332 Avlwalk *w;
333 Avltree *t;
335 if(a == nil)
336 return;
338 p = findpredecessor(a);
339 t = v;
340 for(w = t->walks; w; w = w->next){
341 if(w->node == a){
342 /* back pointer to predecessor; not perfect but adequate */
343 w->moved = 1;
344 w->node = p;
345 if(p == nil)
346 w->started = 0;
351 void
352 deleteavl(Avltree *t, Avl *key, Avl **oldp)
354 *oldp = nil;
355 _deleteavl(&t->root, nil, key, t->cmp, oldp, walkdel, t);
358 Avlwalk*
359 avlwalk(Avltree *t)
361 Avlwalk *w;
363 w = malloc(sizeof *w);
364 if(w == nil)
365 return nil;
366 memset(w, 0, sizeof *w);
367 w->tree = t;
368 w->next = t->walks;
369 t->walks = w;
370 return w;
373 Avl*
374 avlnext(Avlwalk *w)
376 Avl *a;
378 if(w->started==0){
379 for(a = w->tree->root; a && a->n[0]; a = a->n[0])
381 w->node = a;
382 w->started = 1;
383 }else{
384 a = findsuccessor(w->node);
385 if(a == w->node)
386 abort();
387 w->node = a;
389 return w->node;
392 Avl*
393 avlprev(Avlwalk *w)
395 Avl *a;
397 if(w->started == 0){
398 for(a = w->tree->root; a && a->n[1]; a = a->n[1])
400 w->node = a;
401 w->started = 1;
402 }else if(w->moved){
403 w->moved = 0;
404 return w->node;
405 }else{
406 a = findpredecessor(w->node);
407 if(a == w->node)
408 abort();
409 w->node = a;
411 return w->node;
414 void
415 endwalk(Avlwalk *w)
417 Avltree *t;
418 Avlwalk **l;
420 t = w->tree;
421 for(l = &t->walks; *l; l = &(*l)->next){
422 if(*l == w){
423 *l = w->next;
424 break;
427 free(w);
430 /*
431 static void
432 walkavl(Avl *t, void (*f)(Avl*, void*), void *v)
434 if(t == nil)
435 return;
436 walkavl(t->n[0], f, v);
437 f(t, v);
438 walkavl(t->n[1], f, v);
440 */