Blob


1 #include <u.h>
2 #include <libc.h>
3 #include <draw.h>
4 #include <memdraw.h>
6 int drawdebug;
7 static int tablesbuilt;
9 /* perfect approximation to NTSC = .299r+.587g+.114b when 0 ≤ r,g,b < 256 */
10 #define RGB2K(r,g,b) ((156763*(r)+307758*(g)+59769*(b))>>19)
12 /*
13 * for 0 ≤ x ≤ 255*255, (x*0x0101+0x100)>>16 is a perfect approximation.
14 * for 0 ≤ x < (1<<16), x/255 = ((x+1)*0x0101)>>16 is a perfect approximation.
15 * the last one is perfect for all up to 1<<16, avoids a multiply, but requires a rathole.
16 */
17 /* #define DIV255(x) (((x)*257+256)>>16) */
18 #define DIV255(x) ((((x)+1)*257)>>16)
19 /* #define DIV255(x) (tmp=(x)+1, (tmp+(tmp>>8))>>8) */
21 #define MUL(x, y, t) (t = (x)*(y)+128, (t+(t>>8))>>8)
22 #define MASK13 0xFF00FF00
23 #define MASK02 0x00FF00FF
24 #define MUL13(a, x, t) (t = (a)*(((x)&MASK13)>>8)+128, ((t+((t>>8)&MASK02))>>8)&MASK02)
25 #define MUL02(a, x, t) (t = (a)*(((x)&MASK02)>>0)+128, ((t+((t>>8)&MASK02))>>8)&MASK02)
26 #define MUL0123(a, x, s, t) ((MUL13(a, x, s)<<8)|MUL02(a, x, t))
28 #define MUL2(u, v, x, y) (t = (u)*(v)+(x)*(y)+256, (t+(t>>8))>>8)
30 static void mktables(void);
31 typedef int Subdraw(Memdrawparam*);
32 static Subdraw chardraw, alphadraw, memoptdraw;
34 static Memimage* memones;
35 static Memimage* memzeros;
36 Memimage *memwhite;
37 Memimage *memblack;
38 Memimage *memtransparent;
39 Memimage *memopaque;
41 int __ifmt(Fmt*);
43 void
44 memimageinit(void)
45 {
46 static int didinit = 0;
48 if(didinit)
49 return;
51 didinit = 1;
53 mktables();
54 _memmkcmap();
56 fmtinstall('R', Rfmt);
57 fmtinstall('P', Pfmt);
58 fmtinstall('b', __ifmt);
60 memones = allocmemimage(Rect(0,0,1,1), GREY1);
61 memones->flags |= Frepl;
62 memones->clipr = Rect(-0x3FFFFFF, -0x3FFFFFF, 0x3FFFFFF, 0x3FFFFFF);
63 *byteaddr(memones, ZP) = ~0;
65 memzeros = allocmemimage(Rect(0,0,1,1), GREY1);
66 memzeros->flags |= Frepl;
67 memzeros->clipr = Rect(-0x3FFFFFF, -0x3FFFFFF, 0x3FFFFFF, 0x3FFFFFF);
68 *byteaddr(memzeros, ZP) = 0;
70 if(memones == nil || memzeros == nil)
71 assert(0 /*cannot initialize memimage library */); /* RSC BUG */
73 memwhite = memones;
74 memblack = memzeros;
75 memopaque = memones;
76 memtransparent = memzeros;
77 }
79 u32int _imgtorgba(Memimage*, u32int);
80 u32int _rgbatoimg(Memimage*, u32int);
81 u32int _pixelbits(Memimage*, Point);
83 #define DBG if(drawdebug)
84 static Memdrawparam par;
86 Memdrawparam*
87 _memimagedrawsetup(Memimage *dst, Rectangle r, Memimage *src, Point p0, Memimage *mask, Point p1, int op)
88 {
89 if(mask == nil)
90 mask = memopaque;
92 DBG print("memimagedraw %p/%luX %R @ %p %p/%luX %P %p/%luX %P... ", dst, dst->chan, r, dst->data->bdata, src, src->chan, p0, mask, mask->chan, p1);
94 if(drawclip(dst, &r, src, &p0, mask, &p1, &par.sr, &par.mr) == 0){
95 /* if(drawdebug) */
96 /* iprint("empty clipped rectangle\n"); */
97 return nil;
98 }
100 if(op < Clear || op > SoverD){
101 /* if(drawdebug) */
102 /* iprint("op out of range: %d\n", op); */
103 return nil;
106 par.op = op;
107 par.dst = dst;
108 par.r = r;
109 par.src = src;
110 /* par.sr set by drawclip */
111 par.mask = mask;
112 /* par.mr set by drawclip */
114 par.state = 0;
115 if(src->flags&Frepl){
116 par.state |= Replsrc;
117 if(Dx(src->r)==1 && Dy(src->r)==1){
118 par.sval = pixelbits(src, src->r.min);
119 par.state |= Simplesrc;
120 par.srgba = _imgtorgba(src, par.sval);
121 par.sdval = _rgbatoimg(dst, par.srgba);
122 if((par.srgba&0xFF) == 0 && (op&DoutS)){
123 /* if (drawdebug) iprint("fill with transparent source\n"); */
124 return nil; /* no-op successfully handled */
126 if((par.srgba&0xFF) == 0xFF)
127 par.state |= Fullsrc;
131 if(mask->flags & Frepl){
132 par.state |= Replmask;
133 if(Dx(mask->r)==1 && Dy(mask->r)==1){
134 par.mval = pixelbits(mask, mask->r.min);
135 if(par.mval == 0 && (op&DoutS)){
136 /* if(drawdebug) iprint("fill with zero mask\n"); */
137 return nil; /* no-op successfully handled */
139 par.state |= Simplemask;
140 if(par.mval == ~0)
141 par.state |= Fullmask;
142 par.mrgba = _imgtorgba(mask, par.mval);
146 /* if(drawdebug) */
147 /* iprint("dr %R sr %R mr %R...", r, par.sr, par.mr); */
148 DBG print("draw dr %R sr %R mr %R %lux\n", r, par.sr, par.mr, par.state);
150 return &par;
153 void
154 _memimagedraw(Memdrawparam *par)
156 /*
157 * Now that we've clipped the parameters down to be consistent, we
158 * simply try sub-drawing routines in order until we find one that was able
159 * to handle us. If the sub-drawing routine returns zero, it means it was
160 * unable to satisfy the request, so we do not return.
161 */
163 /*
164 * Hardware support. Each video driver provides this function,
165 * which checks to see if there is anything it can help with.
166 * There could be an if around this checking to see if dst is in video memory.
167 */
168 DBG print("test hwdraw\n");
169 if(hwdraw(par)){
170 /*if(drawdebug) iprint("hw handled\n"); */
171 DBG print("hwdraw handled\n");
172 return;
174 /*
175 * Optimizations using memmove and memset.
176 */
177 DBG print("test memoptdraw\n");
178 if(memoptdraw(par)){
179 /*if(drawdebug) iprint("memopt handled\n"); */
180 DBG print("memopt handled\n");
181 return;
184 /*
185 * Character drawing.
186 * Solid source color being painted through a boolean mask onto a high res image.
187 */
188 DBG print("test chardraw\n");
189 if(chardraw(par)){
190 /*if(drawdebug) iprint("chardraw handled\n"); */
191 DBG print("chardraw handled\n");
192 return;
195 /*
196 * General calculation-laden case that does alpha for each pixel.
197 */
198 DBG print("do alphadraw\n");
199 alphadraw(par);
200 /*if(drawdebug) iprint("alphadraw handled\n"); */
201 DBG print("alphadraw handled\n");
203 #undef DBG
205 /*
206 * Clip the destination rectangle further based on the properties of the
207 * source and mask rectangles. Once the destination rectangle is properly
208 * clipped, adjust the source and mask rectangles to be the same size.
209 * Then if source or mask is replicated, move its clipped rectangle
210 * so that its minimum point falls within the repl rectangle.
212 * Return zero if the final rectangle is null.
213 */
214 int
215 drawclip(Memimage *dst, Rectangle *r, Memimage *src, Point *p0, Memimage *mask, Point *p1, Rectangle *sr, Rectangle *mr)
217 Point rmin, delta;
218 int splitcoords;
219 Rectangle omr;
221 if(r->min.x>=r->max.x || r->min.y>=r->max.y)
222 return 0;
223 splitcoords = (p0->x!=p1->x) || (p0->y!=p1->y);
224 /* clip to destination */
225 rmin = r->min;
226 if(!rectclip(r, dst->r) || !rectclip(r, dst->clipr))
227 return 0;
228 /* move mask point */
229 p1->x += r->min.x-rmin.x;
230 p1->y += r->min.y-rmin.y;
231 /* move source point */
232 p0->x += r->min.x-rmin.x;
233 p0->y += r->min.y-rmin.y;
234 /* map destination rectangle into source */
235 sr->min = *p0;
236 sr->max.x = p0->x+Dx(*r);
237 sr->max.y = p0->y+Dy(*r);
238 /* sr is r in source coordinates; clip to source */
239 if(!(src->flags&Frepl) && !rectclip(sr, src->r))
240 return 0;
241 if(!rectclip(sr, src->clipr))
242 return 0;
243 /* compute and clip rectangle in mask */
244 if(splitcoords){
245 /* move mask point with source */
246 p1->x += sr->min.x-p0->x;
247 p1->y += sr->min.y-p0->y;
248 mr->min = *p1;
249 mr->max.x = p1->x+Dx(*sr);
250 mr->max.y = p1->y+Dy(*sr);
251 omr = *mr;
252 /* mr is now rectangle in mask; clip it */
253 if(!(mask->flags&Frepl) && !rectclip(mr, mask->r))
254 return 0;
255 if(!rectclip(mr, mask->clipr))
256 return 0;
257 /* reflect any clips back to source */
258 sr->min.x += mr->min.x-omr.min.x;
259 sr->min.y += mr->min.y-omr.min.y;
260 sr->max.x += mr->max.x-omr.max.x;
261 sr->max.y += mr->max.y-omr.max.y;
262 *p1 = mr->min;
263 }else{
264 if(!(mask->flags&Frepl) && !rectclip(sr, mask->r))
265 return 0;
266 if(!rectclip(sr, mask->clipr))
267 return 0;
268 *p1 = sr->min;
271 /* move source clipping back to destination */
272 delta.x = r->min.x - p0->x;
273 delta.y = r->min.y - p0->y;
274 r->min.x = sr->min.x + delta.x;
275 r->min.y = sr->min.y + delta.y;
276 r->max.x = sr->max.x + delta.x;
277 r->max.y = sr->max.y + delta.y;
279 /* move source rectangle so sr->min is in src->r */
280 if(src->flags&Frepl) {
281 delta.x = drawreplxy(src->r.min.x, src->r.max.x, sr->min.x) - sr->min.x;
282 delta.y = drawreplxy(src->r.min.y, src->r.max.y, sr->min.y) - sr->min.y;
283 sr->min.x += delta.x;
284 sr->min.y += delta.y;
285 sr->max.x += delta.x;
286 sr->max.y += delta.y;
288 *p0 = sr->min;
290 /* move mask point so it is in mask->r */
291 *p1 = drawrepl(mask->r, *p1);
292 mr->min = *p1;
293 mr->max.x = p1->x+Dx(*sr);
294 mr->max.y = p1->y+Dy(*sr);
296 assert(Dx(*sr) == Dx(*mr) && Dx(*mr) == Dx(*r));
297 assert(Dy(*sr) == Dy(*mr) && Dy(*mr) == Dy(*r));
298 assert(ptinrect(*p0, src->r));
299 assert(ptinrect(*p1, mask->r));
300 assert(ptinrect(r->min, dst->r));
302 return 1;
305 /*
306 * Conversion tables.
307 */
308 static uchar replbit[1+8][256]; /* replbit[x][y] is the replication of the x-bit quantity y to 8-bit depth */
309 static uchar conv18[256][8]; /* conv18[x][y] is the yth pixel in the depth-1 pixel x */
310 static uchar conv28[256][4]; /* ... */
311 static uchar conv48[256][2];
313 /*
314 * bitmap of how to replicate n bits to fill 8, for 1 ≤ n ≤ 8.
315 * the X's are where to put the bottom (ones) bit of the n-bit pattern.
316 * only the top 8 bits of the result are actually used.
317 * (the lower 8 bits are needed to get bits in the right place
318 * when n is not a divisor of 8.)
320 * Should check to see if its easier to just refer to replmul than
321 * use the precomputed values in replbit. On PCs it may well
322 * be; on machines with slow multiply instructions it probably isn't.
323 */
324 #define a ((((((((((((((((0
325 #define X *2+1)
326 #define _ *2)
327 static int replmul[1+8] = {
328 0,
329 a X X X X X X X X X X X X X X X X,
330 a _ X _ X _ X _ X _ X _ X _ X _ X,
331 a _ _ X _ _ X _ _ X _ _ X _ _ X _,
332 a _ _ _ X _ _ _ X _ _ _ X _ _ _ X,
333 a _ _ _ _ X _ _ _ _ X _ _ _ _ X _,
334 a _ _ _ _ _ X _ _ _ _ _ X _ _ _ _,
335 a _ _ _ _ _ _ X _ _ _ _ _ _ X _ _,
336 a _ _ _ _ _ _ _ X _ _ _ _ _ _ _ X,
337 };
338 #undef a
339 #undef X
340 #undef _
342 static void
343 mktables(void)
345 int i, j, mask, sh, small;
347 if(tablesbuilt)
348 return;
350 fmtinstall('R', Rfmt);
351 fmtinstall('P', Pfmt);
352 tablesbuilt = 1;
354 /* bit replication up to 8 bits */
355 for(i=0; i<256; i++){
356 for(j=0; j<=8; j++){ /* j <= 8 [sic] */
357 small = i & ((1<<j)-1);
358 replbit[j][i] = (small*replmul[j])>>8;
362 /* bit unpacking up to 8 bits, only powers of 2 */
363 for(i=0; i<256; i++){
364 for(j=0, sh=7, mask=1; j<8; j++, sh--)
365 conv18[i][j] = replbit[1][(i>>sh)&mask];
367 for(j=0, sh=6, mask=3; j<4; j++, sh-=2)
368 conv28[i][j] = replbit[2][(i>>sh)&mask];
370 for(j=0, sh=4, mask=15; j<2; j++, sh-=4)
371 conv48[i][j] = replbit[4][(i>>sh)&mask];
375 static uchar ones = 0xff;
377 /*
378 * General alpha drawing case. Can handle anything.
379 */
380 typedef struct Buffer Buffer;
381 struct Buffer {
382 /* used by most routines */
383 uchar *red;
384 uchar *grn;
385 uchar *blu;
386 uchar *alpha;
387 uchar *grey;
388 u32int *rgba;
389 int delta; /* number of bytes to add to pointer to get next pixel to the right */
391 /* used by boolcalc* for mask data */
392 uchar *m; /* ptr to mask data r.min byte; like p->bytermin */
393 int mskip; /* no. of left bits to skip in *m */
394 uchar *bm; /* ptr to mask data img->r.min byte; like p->bytey0s */
395 int bmskip; /* no. of left bits to skip in *bm */
396 uchar *em; /* ptr to mask data img->r.max.x byte; like p->bytey0e */
397 int emskip; /* no. of right bits to skip in *em */
398 };
400 typedef struct Param Param;
401 typedef Buffer Readfn(Param*, uchar*, int);
402 typedef void Writefn(Param*, uchar*, Buffer);
403 typedef Buffer Calcfn(Buffer, Buffer, Buffer, int, int, int);
405 enum {
406 MAXBCACHE = 16
407 };
409 /* giant rathole to customize functions with */
410 struct Param {
411 Readfn *replcall;
412 Readfn *greymaskcall;
413 Readfn *convreadcall;
414 Writefn *convwritecall;
416 Memimage *img;
417 Rectangle r;
418 int dx; /* of r */
419 int needbuf;
420 int convgrey;
421 int alphaonly;
423 uchar *bytey0s; /* byteaddr(Pt(img->r.min.x, img->r.min.y)) */
424 uchar *bytermin; /* byteaddr(Pt(r.min.x, img->r.min.y)) */
425 uchar *bytey0e; /* byteaddr(Pt(img->r.max.x, img->r.min.y)) */
426 int bwidth;
428 int replcache; /* if set, cache buffers */
429 Buffer bcache[MAXBCACHE];
430 u32int bfilled;
431 uchar *bufbase;
432 int bufoff;
433 int bufdelta;
435 int dir;
437 int convbufoff;
438 uchar *convbuf;
439 Param *convdpar;
440 int convdx;
441 };
443 static uchar *drawbuf;
444 static int ndrawbuf;
445 static int mdrawbuf;
446 static Param spar, mpar, dpar; /* easier on the stacks */
447 static Readfn greymaskread, replread, readptr;
448 static Writefn nullwrite;
449 static Calcfn alphacalc0, alphacalc14, alphacalc2810, alphacalc3679, alphacalc5, alphacalc11, alphacalcS;
450 static Calcfn boolcalc14, boolcalc236789, boolcalc1011;
452 static Readfn* readfn(Memimage*);
453 static Readfn* readalphafn(Memimage*);
454 static Writefn* writefn(Memimage*);
456 static Calcfn* boolcopyfn(Memimage*, Memimage*);
457 static Readfn* convfn(Memimage*, Param*, Memimage*, Param*);
459 static Calcfn *alphacalc[Ncomp] =
461 alphacalc0, /* Clear */
462 alphacalc14, /* DoutS */
463 alphacalc2810, /* SoutD */
464 alphacalc3679, /* DxorS */
465 alphacalc14, /* DinS */
466 alphacalc5, /* D */
467 alphacalc3679, /* DatopS */
468 alphacalc3679, /* DoverS */
469 alphacalc2810, /* SinD */
470 alphacalc3679, /* SatopD */
471 alphacalc2810, /* S */
472 alphacalc11, /* SoverD */
473 };
475 static Calcfn *boolcalc[Ncomp] =
477 alphacalc0, /* Clear */
478 boolcalc14, /* DoutS */
479 boolcalc236789, /* SoutD */
480 boolcalc236789, /* DxorS */
481 boolcalc14, /* DinS */
482 alphacalc5, /* D */
483 boolcalc236789, /* DatopS */
484 boolcalc236789, /* DoverS */
485 boolcalc236789, /* SinD */
486 boolcalc236789, /* SatopD */
487 boolcalc1011, /* S */
488 boolcalc1011, /* SoverD */
489 };
491 static int
492 allocdrawbuf(void)
494 uchar *p;
496 if(ndrawbuf > mdrawbuf){
497 p = realloc(drawbuf, ndrawbuf);
498 if(p == nil){
499 werrstr("memimagedraw out of memory");
500 return -1;
502 drawbuf = p;
503 mdrawbuf = ndrawbuf;
505 return 0;
508 static void
509 getparam(Param *p, Memimage *img, Rectangle r, int convgrey, int needbuf)
511 int nbuf;
513 memset(p, 0, sizeof *p);
515 p->img = img;
516 p->r = r;
517 p->dx = Dx(r);
518 p->needbuf = needbuf;
519 p->convgrey = convgrey;
521 assert(img->r.min.x <= r.min.x && r.min.x < img->r.max.x);
523 p->bytey0s = byteaddr(img, Pt(img->r.min.x, img->r.min.y));
524 p->bytermin = byteaddr(img, Pt(r.min.x, img->r.min.y));
525 p->bytey0e = byteaddr(img, Pt(img->r.max.x, img->r.min.y));
526 p->bwidth = sizeof(u32int)*img->width;
528 assert(p->bytey0s <= p->bytermin && p->bytermin <= p->bytey0e);
530 if(p->r.min.x == p->img->r.min.x)
531 assert(p->bytermin == p->bytey0s);
533 nbuf = 1;
534 if((img->flags&Frepl) && Dy(img->r) <= MAXBCACHE && Dy(img->r) < Dy(r)){
535 p->replcache = 1;
536 nbuf = Dy(img->r);
538 p->bufdelta = 4*p->dx;
539 p->bufoff = ndrawbuf;
540 ndrawbuf += p->bufdelta*nbuf;
543 static void
544 clipy(Memimage *img, int *y)
546 int dy;
548 dy = Dy(img->r);
549 if(*y == dy)
550 *y = 0;
551 else if(*y == -1)
552 *y = dy-1;
553 assert(0 <= *y && *y < dy);
556 static void
557 dumpbuf(char *s, Buffer b, int n)
559 int i;
560 uchar *p;
562 print("%s", s);
563 for(i=0; i<n; i++){
564 print(" ");
565 if(p=b.grey){
566 print(" k%.2uX", *p);
567 b.grey += b.delta;
568 }else{
569 if(p=b.red){
570 print(" r%.2uX", *p);
571 b.red += b.delta;
573 if(p=b.grn){
574 print(" g%.2uX", *p);
575 b.grn += b.delta;
577 if(p=b.blu){
578 print(" b%.2uX", *p);
579 b.blu += b.delta;
582 if((p=b.alpha) != &ones){
583 print(" α%.2uX", *p);
584 b.alpha += b.delta;
587 print("\n");
590 /*
591 * For each scan line, we expand the pixels from source, mask, and destination
592 * into byte-aligned red, green, blue, alpha, and grey channels. If buffering is not
593 * needed and the channels were already byte-aligned (grey8, rgb24, rgba32, rgb32),
594 * the readers need not copy the data: they can simply return pointers to the data.
595 * If the destination image is grey and the source is not, it is converted using the NTSC
596 * formula.
598 * Once we have all the channels, we call either rgbcalc or greycalc, depending on
599 * whether the destination image is color. This is allowed to overwrite the dst buffer (perhaps
600 * the actual data, perhaps a copy) with its result. It should only overwrite the dst buffer
601 * with the same format (i.e. red bytes with red bytes, etc.) A new buffer is returned from
602 * the calculator, and that buffer is passed to a function to write it to the destination.
603 * If the buffer is already pointing at the destination, the writing function is a no-op.
604 */
605 #define DBG if(drawdebug)
606 static int
607 alphadraw(Memdrawparam *par)
609 int isgrey, starty, endy, op;
610 int needbuf, dsty, srcy, masky;
611 int y, dir, dx, dy;
612 Buffer bsrc, bdst, bmask;
613 Readfn *rdsrc, *rdmask, *rddst;
614 Calcfn *calc;
615 Writefn *wrdst;
616 Memimage *src, *mask, *dst;
617 Rectangle r, sr, mr;
619 if(drawdebug)
620 print("alphadraw %R\n", par->r);
621 r = par->r;
622 dx = Dx(r);
623 dy = Dy(r);
625 ndrawbuf = 0;
627 src = par->src;
628 mask = par->mask;
629 dst = par->dst;
630 sr = par->sr;
631 mr = par->mr;
632 op = par->op;
634 isgrey = dst->flags&Fgrey;
636 /*
637 * Buffering when src and dst are the same bitmap is sufficient but not
638 * necessary. There are stronger conditions we could use. We could
639 * check to see if the rectangles intersect, and if simply moving in the
640 * correct y direction can avoid the need to buffer.
641 */
642 needbuf = (src->data == dst->data);
644 getparam(&spar, src, sr, isgrey, needbuf);
645 getparam(&dpar, dst, r, isgrey, needbuf);
646 getparam(&mpar, mask, mr, 0, needbuf);
648 dir = (needbuf && byteaddr(dst, r.min) > byteaddr(src, sr.min)) ? -1 : 1;
649 spar.dir = mpar.dir = dpar.dir = dir;
651 /*
652 * If the mask is purely boolean, we can convert from src to dst format
653 * when we read src, and then just copy it to dst where the mask tells us to.
654 * This requires a boolean (1-bit grey) mask and lack of a source alpha channel.
656 * The computation is accomplished by assigning the function pointers as follows:
657 * rdsrc - read and convert source into dst format in a buffer
658 * rdmask - convert mask to bytes, set pointer to it
659 * rddst - fill with pointer to real dst data, but do no reads
660 * calc - copy src onto dst when mask says to.
661 * wrdst - do nothing
662 * This is slightly sleazy, since things aren't doing exactly what their names say,
663 * but it avoids a fair amount of code duplication to make this a case here
664 * rather than have a separate booldraw.
665 */
666 /*if(drawdebug) iprint("flag %lud mchan %lux=?%x dd %d\n", src->flags&Falpha, mask->chan, GREY1, dst->depth); */
667 if(!(src->flags&Falpha) && mask->chan == GREY1 && dst->depth >= 8 && op == SoverD){
668 /*if(drawdebug) iprint("boolcopy..."); */
669 rdsrc = convfn(dst, &dpar, src, &spar);
670 rddst = readptr;
671 rdmask = readfn(mask);
672 calc = boolcopyfn(dst, mask);
673 wrdst = nullwrite;
674 }else{
675 /* usual alphadraw parameter fetching */
676 rdsrc = readfn(src);
677 rddst = readfn(dst);
678 wrdst = writefn(dst);
679 calc = alphacalc[op];
681 /*
682 * If there is no alpha channel, we'll ask for a grey channel
683 * and pretend it is the alpha.
684 */
685 if(mask->flags&Falpha){
686 rdmask = readalphafn(mask);
687 mpar.alphaonly = 1;
688 }else{
689 mpar.greymaskcall = readfn(mask);
690 mpar.convgrey = 1;
691 rdmask = greymaskread;
693 /*
694 * Should really be above, but then boolcopyfns would have
695 * to deal with bit alignment, and I haven't written that.
697 * This is a common case for things like ellipse drawing.
698 * When there's no alpha involved and the mask is boolean,
699 * we can avoid all the division and multiplication.
700 */
701 if(mask->chan == GREY1 && !(src->flags&Falpha))
702 calc = boolcalc[op];
703 else if(op == SoverD && !(src->flags&Falpha))
704 calc = alphacalcS;
708 /*
709 * If the image has a small enough repl rectangle,
710 * we can just read each line once and cache them.
711 */
712 if(spar.replcache){
713 spar.replcall = rdsrc;
714 rdsrc = replread;
716 if(mpar.replcache){
717 mpar.replcall = rdmask;
718 rdmask = replread;
721 if(allocdrawbuf() < 0)
722 return 0;
724 /*
725 * Before we were saving only offsets from drawbuf in the parameter
726 * structures; now that drawbuf has been grown to accomodate us,
727 * we can fill in the pointers.
728 */
729 spar.bufbase = drawbuf+spar.bufoff;
730 mpar.bufbase = drawbuf+mpar.bufoff;
731 dpar.bufbase = drawbuf+dpar.bufoff;
732 spar.convbuf = drawbuf+spar.convbufoff;
734 if(dir == 1){
735 starty = 0;
736 endy = dy;
737 }else{
738 starty = dy-1;
739 endy = -1;
742 /*
743 * srcy, masky, and dsty are offsets from the top of their
744 * respective Rectangles. they need to be contained within
745 * the rectangles, so clipy can keep them there without division.
746 */
747 srcy = (starty + sr.min.y - src->r.min.y)%Dy(src->r);
748 masky = (starty + mr.min.y - mask->r.min.y)%Dy(mask->r);
749 dsty = starty + r.min.y - dst->r.min.y;
751 assert(0 <= srcy && srcy < Dy(src->r));
752 assert(0 <= masky && masky < Dy(mask->r));
753 assert(0 <= dsty && dsty < Dy(dst->r));
755 if(drawdebug)
756 print("alphadraw: rdsrc=%p rdmask=%p rddst=%p calc=%p wrdst=%p\n",
757 rdsrc, rdmask, rddst, calc, wrdst);
758 for(y=starty; y!=endy; y+=dir, srcy+=dir, masky+=dir, dsty+=dir){
759 clipy(src, &srcy);
760 clipy(dst, &dsty);
761 clipy(mask, &masky);
763 bsrc = rdsrc(&spar, spar.bufbase, srcy);
764 DBG print("[");
765 bmask = rdmask(&mpar, mpar.bufbase, masky);
766 DBG print("]\n");
767 bdst = rddst(&dpar, dpar.bufbase, dsty);
768 DBG dumpbuf("src", bsrc, dx);
769 DBG dumpbuf("mask", bmask, dx);
770 DBG dumpbuf("dst", bdst, dx);
771 bdst = calc(bdst, bsrc, bmask, dx, isgrey, op);
772 DBG dumpbuf("bdst", bdst, dx);
773 wrdst(&dpar, dpar.bytermin+dsty*dpar.bwidth, bdst);
776 return 1;
778 #undef DBG
780 static Buffer
781 alphacalc0(Buffer bdst, Buffer b1, Buffer b2, int dx, int grey, int op)
783 USED(grey);
784 USED(op);
785 memset(bdst.rgba, 0, dx*bdst.delta);
786 return bdst;
789 static Buffer
790 alphacalc14(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
792 Buffer obdst;
793 int fd, sadelta;
794 int i, sa, ma, q;
795 u32int s, t;
797 obdst = bdst;
798 sadelta = bsrc.alpha == &ones ? 0 : bsrc.delta;
799 q = bsrc.delta == 4 && bdst.delta == 4;
801 for(i=0; i<dx; i++){
802 sa = *bsrc.alpha;
803 ma = *bmask.alpha;
804 fd = MUL(sa, ma, t);
805 if(op == DoutS)
806 fd = 255-fd;
808 if(grey){
809 *bdst.grey = MUL(fd, *bdst.grey, t);
810 bsrc.grey += bsrc.delta;
811 bdst.grey += bdst.delta;
812 }else{
813 if(q){
814 *bdst.rgba = MUL0123(fd, *bdst.rgba, s, t);
815 bsrc.rgba++;
816 bdst.rgba++;
817 bsrc.alpha += sadelta;
818 bmask.alpha += bmask.delta;
819 continue;
821 *bdst.red = MUL(fd, *bdst.red, t);
822 *bdst.grn = MUL(fd, *bdst.grn, t);
823 *bdst.blu = MUL(fd, *bdst.blu, t);
824 bsrc.red += bsrc.delta;
825 bsrc.blu += bsrc.delta;
826 bsrc.grn += bsrc.delta;
827 bdst.red += bdst.delta;
828 bdst.blu += bdst.delta;
829 bdst.grn += bdst.delta;
831 if(bdst.alpha != &ones){
832 *bdst.alpha = MUL(fd, *bdst.alpha, t);
833 bdst.alpha += bdst.delta;
835 bmask.alpha += bmask.delta;
836 bsrc.alpha += sadelta;
838 return obdst;
841 static Buffer
842 alphacalc2810(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
844 Buffer obdst;
845 int fs, sadelta;
846 int i, ma, da, q;
847 u32int s, t;
849 obdst = bdst;
850 sadelta = bsrc.alpha == &ones ? 0 : bsrc.delta;
851 q = bsrc.delta == 4 && bdst.delta == 4;
853 for(i=0; i<dx; i++){
854 ma = *bmask.alpha;
855 da = *bdst.alpha;
856 if(op == SoutD)
857 da = 255-da;
858 fs = ma;
859 if(op != S)
860 fs = MUL(fs, da, t);
862 if(grey){
863 *bdst.grey = MUL(fs, *bsrc.grey, t);
864 bsrc.grey += bsrc.delta;
865 bdst.grey += bdst.delta;
866 }else{
867 if(q){
868 *bdst.rgba = MUL0123(fs, *bsrc.rgba, s, t);
869 bsrc.rgba++;
870 bdst.rgba++;
871 bmask.alpha += bmask.delta;
872 bdst.alpha += bdst.delta;
873 continue;
875 *bdst.red = MUL(fs, *bsrc.red, t);
876 *bdst.grn = MUL(fs, *bsrc.grn, t);
877 *bdst.blu = MUL(fs, *bsrc.blu, t);
878 bsrc.red += bsrc.delta;
879 bsrc.blu += bsrc.delta;
880 bsrc.grn += bsrc.delta;
881 bdst.red += bdst.delta;
882 bdst.blu += bdst.delta;
883 bdst.grn += bdst.delta;
885 if(bdst.alpha != &ones){
886 *bdst.alpha = MUL(fs, *bsrc.alpha, t);
887 bdst.alpha += bdst.delta;
889 bmask.alpha += bmask.delta;
890 bsrc.alpha += sadelta;
892 return obdst;
895 static Buffer
896 alphacalc3679(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
898 Buffer obdst;
899 int fs, fd, sadelta;
900 int i, sa, ma, da, q;
901 u32int s, t, u, v;
903 obdst = bdst;
904 sadelta = bsrc.alpha == &ones ? 0 : bsrc.delta;
905 q = bsrc.delta == 4 && bdst.delta == 4;
907 for(i=0; i<dx; i++){
908 sa = *bsrc.alpha;
909 ma = *bmask.alpha;
910 da = *bdst.alpha;
911 if(op == SatopD)
912 fs = MUL(ma, da, t);
913 else
914 fs = MUL(ma, 255-da, t);
915 if(op == DoverS)
916 fd = 255;
917 else{
918 fd = MUL(sa, ma, t);
919 if(op != DatopS)
920 fd = 255-fd;
923 if(grey){
924 *bdst.grey = MUL(fs, *bsrc.grey, s)+MUL(fd, *bdst.grey, t);
925 bsrc.grey += bsrc.delta;
926 bdst.grey += bdst.delta;
927 }else{
928 if(q){
929 *bdst.rgba = MUL0123(fs, *bsrc.rgba, s, t)+MUL0123(fd, *bdst.rgba, u, v);
930 bsrc.rgba++;
931 bdst.rgba++;
932 bsrc.alpha += sadelta;
933 bmask.alpha += bmask.delta;
934 bdst.alpha += bdst.delta;
935 continue;
937 *bdst.red = MUL(fs, *bsrc.red, s)+MUL(fd, *bdst.red, t);
938 *bdst.grn = MUL(fs, *bsrc.grn, s)+MUL(fd, *bdst.grn, t);
939 *bdst.blu = MUL(fs, *bsrc.blu, s)+MUL(fd, *bdst.blu, t);
940 bsrc.red += bsrc.delta;
941 bsrc.blu += bsrc.delta;
942 bsrc.grn += bsrc.delta;
943 bdst.red += bdst.delta;
944 bdst.blu += bdst.delta;
945 bdst.grn += bdst.delta;
947 if(bdst.alpha != &ones){
948 *bdst.alpha = MUL(fs, sa, s)+MUL(fd, da, t);
949 bdst.alpha += bdst.delta;
951 bmask.alpha += bmask.delta;
952 bsrc.alpha += sadelta;
954 return obdst;
957 static Buffer
958 alphacalc5(Buffer bdst, Buffer b1, Buffer b2, int dx, int grey, int op)
960 USED(dx);
961 USED(grey);
962 USED(op);
963 return bdst;
966 static Buffer
967 alphacalc11(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
969 Buffer obdst;
970 int fd, sadelta;
971 int i, sa, ma, q;
972 u32int s, t, u, v;
974 USED(op);
975 obdst = bdst;
976 sadelta = bsrc.alpha == &ones ? 0 : bsrc.delta;
977 q = bsrc.delta == 4 && bdst.delta == 4;
979 for(i=0; i<dx; i++){
980 sa = *bsrc.alpha;
981 ma = *bmask.alpha;
982 fd = 255-MUL(sa, ma, t);
984 if(grey){
985 *bdst.grey = MUL(ma, *bsrc.grey, s)+MUL(fd, *bdst.grey, t);
986 bsrc.grey += bsrc.delta;
987 bdst.grey += bdst.delta;
988 }else{
989 if(q){
990 *bdst.rgba = MUL0123(ma, *bsrc.rgba, s, t)+MUL0123(fd, *bdst.rgba, u, v);
991 bsrc.rgba++;
992 bdst.rgba++;
993 bsrc.alpha += sadelta;
994 bmask.alpha += bmask.delta;
995 continue;
997 *bdst.red = MUL(ma, *bsrc.red, s)+MUL(fd, *bdst.red, t);
998 *bdst.grn = MUL(ma, *bsrc.grn, s)+MUL(fd, *bdst.grn, t);
999 *bdst.blu = MUL(ma, *bsrc.blu, s)+MUL(fd, *bdst.blu, t);
1000 bsrc.red += bsrc.delta;
1001 bsrc.blu += bsrc.delta;
1002 bsrc.grn += bsrc.delta;
1003 bdst.red += bdst.delta;
1004 bdst.blu += bdst.delta;
1005 bdst.grn += bdst.delta;
1007 if(bdst.alpha != &ones){
1008 *bdst.alpha = MUL(ma, sa, s)+MUL(fd, *bdst.alpha, t);
1009 bdst.alpha += bdst.delta;
1011 bmask.alpha += bmask.delta;
1012 bsrc.alpha += sadelta;
1014 return obdst;
1018 not used yet
1019 source and mask alpha 1
1020 static Buffer
1021 alphacalcS0(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
1023 Buffer obdst;
1024 int i;
1026 USED(op);
1027 obdst = bdst;
1028 if(bsrc.delta == bdst.delta){
1029 memmove(bdst.rgba, bsrc.rgba, dx*bdst.delta);
1030 return obdst;
1032 for(i=0; i<dx; i++){
1033 if(grey){
1034 *bdst.grey = *bsrc.grey;
1035 bsrc.grey += bsrc.delta;
1036 bdst.grey += bdst.delta;
1037 }else{
1038 *bdst.red = *bsrc.red;
1039 *bdst.grn = *bsrc.grn;
1040 *bdst.blu = *bsrc.blu;
1041 bsrc.red += bsrc.delta;
1042 bsrc.blu += bsrc.delta;
1043 bsrc.grn += bsrc.delta;
1044 bdst.red += bdst.delta;
1045 bdst.blu += bdst.delta;
1046 bdst.grn += bdst.delta;
1048 if(bdst.alpha != &ones){
1049 *bdst.alpha = 255;
1050 bdst.alpha += bdst.delta;
1053 return obdst;
1057 /* source alpha 1 */
1058 static Buffer
1059 alphacalcS(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
1061 Buffer obdst;
1062 int fd;
1063 int i, ma;
1064 u32int s, t;
1066 USED(op);
1067 obdst = bdst;
1069 for(i=0; i<dx; i++){
1070 ma = *bmask.alpha;
1071 fd = 255-ma;
1073 if(grey){
1074 *bdst.grey = MUL(ma, *bsrc.grey, s)+MUL(fd, *bdst.grey, t);
1075 bsrc.grey += bsrc.delta;
1076 bdst.grey += bdst.delta;
1077 }else{
1078 *bdst.red = MUL(ma, *bsrc.red, s)+MUL(fd, *bdst.red, t);
1079 *bdst.grn = MUL(ma, *bsrc.grn, s)+MUL(fd, *bdst.grn, t);
1080 *bdst.blu = MUL(ma, *bsrc.blu, s)+MUL(fd, *bdst.blu, t);
1081 bsrc.red += bsrc.delta;
1082 bsrc.blu += bsrc.delta;
1083 bsrc.grn += bsrc.delta;
1084 bdst.red += bdst.delta;
1085 bdst.blu += bdst.delta;
1086 bdst.grn += bdst.delta;
1088 if(bdst.alpha != &ones){
1089 *bdst.alpha = ma+MUL(fd, *bdst.alpha, t);
1090 bdst.alpha += bdst.delta;
1092 bmask.alpha += bmask.delta;
1094 return obdst;
1097 static Buffer
1098 boolcalc14(Buffer bdst, Buffer b1, Buffer bmask, int dx, int grey, int op)
1100 Buffer obdst;
1101 int i, ma, zero;
1103 obdst = bdst;
1105 for(i=0; i<dx; i++){
1106 ma = *bmask.alpha;
1107 zero = ma ? op == DoutS : op == DinS;
1109 if(grey){
1110 if(zero)
1111 *bdst.grey = 0;
1112 bdst.grey += bdst.delta;
1113 }else{
1114 if(zero)
1115 *bdst.red = *bdst.grn = *bdst.blu = 0;
1116 bdst.red += bdst.delta;
1117 bdst.blu += bdst.delta;
1118 bdst.grn += bdst.delta;
1120 bmask.alpha += bmask.delta;
1121 if(bdst.alpha != &ones){
1122 if(zero)
1123 *bdst.alpha = 0;
1124 bdst.alpha += bdst.delta;
1127 return obdst;
1130 static Buffer
1131 boolcalc236789(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
1133 Buffer obdst;
1134 int fs, fd;
1135 int i, ma, da, zero;
1136 u32int s, t;
1138 obdst = bdst;
1139 zero = !(op&1);
1141 for(i=0; i<dx; i++){
1142 ma = *bmask.alpha;
1143 da = *bdst.alpha;
1144 fs = da;
1145 if(op&2)
1146 fs = 255-da;
1147 fd = 0;
1148 if(op&4)
1149 fd = 255;
1151 if(grey){
1152 if(ma)
1153 *bdst.grey = MUL(fs, *bsrc.grey, s)+MUL(fd, *bdst.grey, t);
1154 else if(zero)
1155 *bdst.grey = 0;
1156 bsrc.grey += bsrc.delta;
1157 bdst.grey += bdst.delta;
1158 }else{
1159 if(ma){
1160 *bdst.red = MUL(fs, *bsrc.red, s)+MUL(fd, *bdst.red, t);
1161 *bdst.grn = MUL(fs, *bsrc.grn, s)+MUL(fd, *bdst.grn, t);
1162 *bdst.blu = MUL(fs, *bsrc.blu, s)+MUL(fd, *bdst.blu, t);
1164 else if(zero)
1165 *bdst.red = *bdst.grn = *bdst.blu = 0;
1166 bsrc.red += bsrc.delta;
1167 bsrc.blu += bsrc.delta;
1168 bsrc.grn += bsrc.delta;
1169 bdst.red += bdst.delta;
1170 bdst.blu += bdst.delta;
1171 bdst.grn += bdst.delta;
1173 bmask.alpha += bmask.delta;
1174 if(bdst.alpha != &ones){
1175 if(ma)
1176 *bdst.alpha = fs+MUL(fd, da, t);
1177 else if(zero)
1178 *bdst.alpha = 0;
1179 bdst.alpha += bdst.delta;
1182 return obdst;
1185 static Buffer
1186 boolcalc1011(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
1188 Buffer obdst;
1189 int i, ma, zero;
1191 obdst = bdst;
1192 zero = !(op&1);
1194 for(i=0; i<dx; i++){
1195 ma = *bmask.alpha;
1197 if(grey){
1198 if(ma)
1199 *bdst.grey = *bsrc.grey;
1200 else if(zero)
1201 *bdst.grey = 0;
1202 bsrc.grey += bsrc.delta;
1203 bdst.grey += bdst.delta;
1204 }else{
1205 if(ma){
1206 *bdst.red = *bsrc.red;
1207 *bdst.grn = *bsrc.grn;
1208 *bdst.blu = *bsrc.blu;
1210 else if(zero)
1211 *bdst.red = *bdst.grn = *bdst.blu = 0;
1212 bsrc.red += bsrc.delta;
1213 bsrc.blu += bsrc.delta;
1214 bsrc.grn += bsrc.delta;
1215 bdst.red += bdst.delta;
1216 bdst.blu += bdst.delta;
1217 bdst.grn += bdst.delta;
1219 bmask.alpha += bmask.delta;
1220 if(bdst.alpha != &ones){
1221 if(ma)
1222 *bdst.alpha = 255;
1223 else if(zero)
1224 *bdst.alpha = 0;
1225 bdst.alpha += bdst.delta;
1228 return obdst;
1231 * Replicated cached scan line read. Call the function listed in the Param,
1232 * but cache the result so that for replicated images we only do the work once.
1234 static Buffer
1235 replread(Param *p, uchar *s, int y)
1237 Buffer *b;
1239 USED(s);
1240 b = &p->bcache[y];
1241 if((p->bfilled & (1<<y)) == 0){
1242 p->bfilled |= 1<<y;
1243 *b = p->replcall(p, p->bufbase+y*p->bufdelta, y);
1245 return *b;
1249 * Alpha reading function that simply relabels the grey pointer.
1251 static Buffer
1252 greymaskread(Param *p, uchar *buf, int y)
1254 Buffer b;
1256 b = p->greymaskcall(p, buf, y);
1257 b.alpha = b.grey;
1258 return b;
1261 #define DBG if(0)
1262 static Buffer
1263 readnbit(Param *p, uchar *buf, int y)
1265 Buffer b;
1266 Memimage *img;
1267 uchar *repl, *r, *w, *ow, bits;
1268 int i, n, sh, depth, x, dx, npack, nbits;
1270 memset(&b, 0, sizeof b);
1271 b.rgba = (u32int*)buf;
1272 b.grey = w = buf;
1273 b.red = b.blu = b.grn = w;
1274 b.alpha = &ones;
1275 b.delta = 1;
1277 dx = p->dx;
1278 img = p->img;
1279 depth = img->depth;
1280 repl = &replbit[depth][0];
1281 npack = 8/depth;
1282 sh = 8-depth;
1284 /* copy from p->r.min.x until end of repl rectangle */
1285 x = p->r.min.x;
1286 n = dx;
1287 if(n > p->img->r.max.x - x)
1288 n = p->img->r.max.x - x;
1290 r = p->bytermin + y*p->bwidth;
1291 DBG print("readnbit dx %d %p=%p+%d*%d, *r=%d fetch %d ", dx, r, p->bytermin, y, p->bwidth, *r, n);
1292 bits = *r++;
1293 nbits = 8;
1294 if(i=x&(npack-1)){
1295 DBG print("throwaway %d...", i);
1296 bits <<= depth*i;
1297 nbits -= depth*i;
1299 for(i=0; i<n; i++){
1300 if(nbits == 0){
1301 DBG print("(%.2ux)...", *r);
1302 bits = *r++;
1303 nbits = 8;
1305 *w++ = repl[bits>>sh];
1306 DBG print("bit %x...", repl[bits>>sh]);
1307 bits <<= depth;
1308 nbits -= depth;
1310 dx -= n;
1311 if(dx == 0)
1312 return b;
1314 assert(x+i == p->img->r.max.x);
1316 /* copy from beginning of repl rectangle until where we were before. */
1317 x = p->img->r.min.x;
1318 n = dx;
1319 if(n > p->r.min.x - x)
1320 n = p->r.min.x - x;
1322 r = p->bytey0s + y*p->bwidth;
1323 DBG print("x=%d r=%p...", x, r);
1324 bits = *r++;
1325 nbits = 8;
1326 if(i=x&(npack-1)){
1327 bits <<= depth*i;
1328 nbits -= depth*i;
1330 DBG print("nbits=%d...", nbits);
1331 for(i=0; i<n; i++){
1332 if(nbits == 0){
1333 bits = *r++;
1334 nbits = 8;
1336 *w++ = repl[bits>>sh];
1337 DBG print("bit %x...", repl[bits>>sh]);
1338 bits <<= depth;
1339 nbits -= depth;
1340 DBG print("bits %x nbits %d...", bits, nbits);
1342 dx -= n;
1343 if(dx == 0)
1344 return b;
1346 assert(dx > 0);
1347 /* now we have exactly one full scan line: just replicate the buffer itself until we are done */
1348 ow = buf;
1349 while(dx--)
1350 *w++ = *ow++;
1352 return b;
1354 #undef DBG
1356 #define DBG if(0)
1357 static void
1358 writenbit(Param *p, uchar *w, Buffer src)
1360 uchar *r;
1361 u32int bits;
1362 int i, sh, depth, npack, nbits, x, ex;
1364 assert(src.grey != nil && src.delta == 1);
1366 x = p->r.min.x;
1367 ex = x+p->dx;
1368 depth = p->img->depth;
1369 npack = 8/depth;
1371 i=x&(npack-1);
1372 bits = i ? (*w >> (8-depth*i)) : 0;
1373 nbits = depth*i;
1374 sh = 8-depth;
1375 r = src.grey;
1377 for(; x<ex; x++){
1378 bits <<= depth;
1379 DBG print(" %x", *r);
1380 bits |= (*r++ >> sh);
1381 nbits += depth;
1382 if(nbits == 8){
1383 *w++ = bits;
1384 nbits = 0;
1388 if(nbits){
1389 sh = 8-nbits;
1390 bits <<= sh;
1391 bits |= *w & ((1<<sh)-1);
1392 *w = bits;
1394 DBG print("\n");
1395 return;
1397 #undef DBG
1399 static Buffer
1400 readcmap(Param *p, uchar *buf, int y)
1402 Buffer b;
1403 int a, convgrey, copyalpha, dx, i, m;
1404 uchar *q, *cmap, *begin, *end, *r, *w;
1406 memset(&b, 0, sizeof b);
1407 begin = p->bytey0s + y*p->bwidth;
1408 r = p->bytermin + y*p->bwidth;
1409 end = p->bytey0e + y*p->bwidth;
1410 cmap = p->img->cmap->cmap2rgb;
1411 convgrey = p->convgrey;
1412 copyalpha = (p->img->flags&Falpha) ? 1 : 0;
1414 w = buf;
1415 dx = p->dx;
1416 if(copyalpha){
1417 b.alpha = buf++;
1418 a = p->img->shift[CAlpha]/8;
1419 m = p->img->shift[CMap]/8;
1420 for(i=0; i<dx; i++){
1421 *w++ = r[a];
1422 q = cmap+r[m]*3;
1423 r += 2;
1424 if(r == end)
1425 r = begin;
1426 if(convgrey){
1427 *w++ = RGB2K(q[0], q[1], q[2]);
1428 }else{
1429 *w++ = q[2]; /* blue */
1430 *w++ = q[1]; /* green */
1431 *w++ = q[0]; /* red */
1434 }else{
1435 b.alpha = &ones;
1436 for(i=0; i<dx; i++){
1437 q = cmap+*r++*3;
1438 if(r == end)
1439 r = begin;
1440 if(convgrey){
1441 *w++ = RGB2K(q[0], q[1], q[2]);
1442 }else{
1443 *w++ = q[2]; /* blue */
1444 *w++ = q[1]; /* green */
1445 *w++ = q[0]; /* red */
1450 b.rgba = (u32int*)(buf-copyalpha);
1452 if(convgrey){
1453 b.grey = buf;
1454 b.red = b.blu = b.grn = buf;
1455 b.delta = 1+copyalpha;
1456 }else{
1457 b.blu = buf;
1458 b.grn = buf+1;
1459 b.red = buf+2;
1460 b.grey = nil;
1461 b.delta = 3+copyalpha;
1463 return b;
1466 static void
1467 writecmap(Param *p, uchar *w, Buffer src)
1469 uchar *cmap, *red, *grn, *blu;
1470 int i, dx, delta;
1472 cmap = p->img->cmap->rgb2cmap;
1474 delta = src.delta;
1475 red= src.red;
1476 grn = src.grn;
1477 blu = src.blu;
1479 dx = p->dx;
1480 for(i=0; i<dx; i++, red+=delta, grn+=delta, blu+=delta)
1481 *w++ = cmap[(*red>>4)*256+(*grn>>4)*16+(*blu>>4)];
1484 #define DBG if(drawdebug)
1485 static Buffer
1486 readbyte(Param *p, uchar *buf, int y)
1488 Buffer b;
1489 Memimage *img;
1490 int dx, isgrey, convgrey, alphaonly, copyalpha, i, nb;
1491 uchar *begin, *end, *r, *w, *rrepl, *grepl, *brepl, *arepl, *krepl;
1492 uchar ured, ugrn, ublu;
1493 u32int u;
1495 img = p->img;
1496 begin = p->bytey0s + y*p->bwidth;
1497 r = p->bytermin + y*p->bwidth;
1498 end = p->bytey0e + y*p->bwidth;
1500 w = buf;
1501 dx = p->dx;
1502 nb = img->depth/8;
1504 convgrey = p->convgrey; /* convert rgb to grey */
1505 isgrey = img->flags&Fgrey;
1506 alphaonly = p->alphaonly;
1507 copyalpha = (img->flags&Falpha) ? 1 : 0;
1509 /* if we can, avoid processing everything */
1510 if(!(img->flags&Frepl) && !convgrey && (img->flags&Fbytes)){
1511 memset(&b, 0, sizeof b);
1512 if(p->needbuf){
1513 memmove(buf, r, dx*nb);
1514 r = buf;
1516 b.rgba = (u32int*)r;
1517 if(copyalpha)
1518 b.alpha = r+img->shift[CAlpha]/8;
1519 else
1520 b.alpha = &ones;
1521 if(isgrey){
1522 b.grey = r+img->shift[CGrey]/8;
1523 b.red = b.grn = b.blu = b.grey;
1524 }else{
1525 b.red = r+img->shift[CRed]/8;
1526 b.grn = r+img->shift[CGreen]/8;
1527 b.blu = r+img->shift[CBlue]/8;
1529 b.delta = nb;
1530 return b;
1533 rrepl = replbit[img->nbits[CRed]];
1534 grepl = replbit[img->nbits[CGreen]];
1535 brepl = replbit[img->nbits[CBlue]];
1536 arepl = replbit[img->nbits[CAlpha]];
1537 krepl = replbit[img->nbits[CGrey]];
1539 for(i=0; i<dx; i++){
1540 u = r[0] | (r[1]<<8) | (r[2]<<16) | (r[3]<<24);
1541 if(copyalpha)
1542 *w++ = arepl[(u>>img->shift[CAlpha]) & img->mask[CAlpha]];
1544 if(isgrey)
1545 *w++ = krepl[(u >> img->shift[CGrey]) & img->mask[CGrey]];
1546 else if(!alphaonly){
1547 ured = rrepl[(u >> img->shift[CRed]) & img->mask[CRed]];
1548 ugrn = grepl[(u >> img->shift[CGreen]) & img->mask[CGreen]];
1549 ublu = brepl[(u >> img->shift[CBlue]) & img->mask[CBlue]];
1550 if(convgrey){
1551 *w++ = RGB2K(ured, ugrn, ublu);
1552 }else{
1553 *w++ = brepl[(u >> img->shift[CBlue]) & img->mask[CBlue]];
1554 *w++ = grepl[(u >> img->shift[CGreen]) & img->mask[CGreen]];
1555 *w++ = rrepl[(u >> img->shift[CRed]) & img->mask[CRed]];
1558 r += nb;
1559 if(r == end)
1560 r = begin;
1563 b.alpha = copyalpha ? buf : &ones;
1564 b.rgba = (u32int*)buf;
1565 if(alphaonly){
1566 b.red = b.grn = b.blu = b.grey = nil;
1567 if(!copyalpha)
1568 b.rgba = nil;
1569 b.delta = 1;
1570 }else if(isgrey || convgrey){
1571 b.grey = buf+copyalpha;
1572 b.red = b.grn = b.blu = buf+copyalpha;
1573 b.delta = copyalpha+1;
1574 }else{
1575 b.blu = buf+copyalpha;
1576 b.grn = buf+copyalpha+1;
1577 b.grey = nil;
1578 b.red = buf+copyalpha+2;
1579 b.delta = copyalpha+3;
1581 return b;
1583 #undef DBG
1585 #define DBG if(drawdebug)
1586 static void
1587 writebyte(Param *p, uchar *w, Buffer src)
1589 Memimage *img;
1590 int i, isalpha, isgrey, nb, delta, dx, adelta;
1591 uchar ff, *red, *grn, *blu, *grey, *alpha;
1592 u32int u, mask;
1594 img = p->img;
1596 red = src.red;
1597 grn = src.grn;
1598 blu = src.blu;
1599 alpha = src.alpha;
1600 delta = src.delta;
1601 grey = src.grey;
1602 dx = p->dx;
1604 nb = img->depth/8;
1605 mask = (nb==4) ? 0 : ~((1<<img->depth)-1);
1607 isalpha = img->flags&Falpha;
1608 isgrey = img->flags&Fgrey;
1609 adelta = src.delta;
1611 if(isalpha && (alpha == nil || alpha == &ones)){
1612 ff = 0xFF;
1613 alpha = &ff;
1614 adelta = 0;
1617 for(i=0; i<dx; i++){
1618 u = w[0] | (w[1]<<8) | (w[2]<<16) | (w[3]<<24);
1619 DBG print("u %.8lux...", u);
1620 u &= mask;
1621 DBG print("&mask %.8lux...", u);
1622 if(isgrey){
1623 u |= ((*grey >> (8-img->nbits[CGrey])) & img->mask[CGrey]) << img->shift[CGrey];
1624 DBG print("|grey %.8lux...", u);
1625 grey += delta;
1626 }else{
1627 u |= ((*red >> (8-img->nbits[CRed])) & img->mask[CRed]) << img->shift[CRed];
1628 u |= ((*grn >> (8-img->nbits[CGreen])) & img->mask[CGreen]) << img->shift[CGreen];
1629 u |= ((*blu >> (8-img->nbits[CBlue])) & img->mask[CBlue]) << img->shift[CBlue];
1630 red += delta;
1631 grn += delta;
1632 blu += delta;
1633 DBG print("|rgb %.8lux...", u);
1636 if(isalpha){
1637 u |= ((*alpha >> (8-img->nbits[CAlpha])) & img->mask[CAlpha]) << img->shift[CAlpha];
1638 alpha += adelta;
1639 DBG print("|alpha %.8lux...", u);
1642 w[0] = u;
1643 w[1] = u>>8;
1644 w[2] = u>>16;
1645 w[3] = u>>24;
1646 DBG print("write back %.8lux...", u);
1647 w += nb;
1650 #undef DBG
1652 static Readfn*
1653 readfn(Memimage *img)
1655 if(img->depth < 8)
1656 return readnbit;
1657 if(img->nbits[CMap] == 8)
1658 return readcmap;
1659 return readbyte;
1662 static Readfn*
1663 readalphafn(Memimage *m)
1665 USED(m);
1666 return readbyte;
1669 static Writefn*
1670 writefn(Memimage *img)
1672 if(img->depth < 8)
1673 return writenbit;
1674 if(img->chan == CMAP8)
1675 return writecmap;
1676 return writebyte;
1679 static void
1680 nullwrite(Param *p, uchar *s, Buffer b)
1682 USED(p);
1683 USED(s);
1686 static Buffer
1687 readptr(Param *p, uchar *s, int y)
1689 Buffer b;
1690 uchar *q;
1692 USED(s);
1693 memset(&b, 0, sizeof b);
1694 q = p->bytermin + y*p->bwidth;
1695 b.red = q; /* ptr to data */
1696 b.grn = b.blu = b.grey = b.alpha = nil;
1697 b.rgba = (u32int*)q;
1698 b.delta = p->img->depth/8;
1699 return b;
1702 static Buffer
1703 boolmemmove(Buffer bdst, Buffer bsrc, Buffer b1, int dx, int i, int o)
1705 USED(i);
1706 USED(o);
1707 memmove(bdst.red, bsrc.red, dx*bdst.delta);
1708 return bdst;
1711 static Buffer
1712 boolcopy8(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int i, int o)
1714 uchar *m, *r, *w, *ew;
1716 USED(i);
1717 USED(o);
1718 m = bmask.grey;
1719 w = bdst.red;
1720 r = bsrc.red;
1721 ew = w+dx;
1722 for(; w < ew; w++,r++)
1723 if(*m++)
1724 *w = *r;
1725 return bdst; /* not used */
1728 static Buffer
1729 boolcopy16(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int i, int o)
1731 uchar *m;
1732 ushort *r, *w, *ew;
1734 USED(i);
1735 USED(o);
1736 m = bmask.grey;
1737 w = (ushort*)bdst.red;
1738 r = (ushort*)bsrc.red;
1739 ew = w+dx;
1740 for(; w < ew; w++,r++)
1741 if(*m++)
1742 *w = *r;
1743 return bdst; /* not used */
1746 static Buffer
1747 boolcopy24(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int i, int o)
1749 uchar *m;
1750 uchar *r, *w, *ew;
1752 USED(i);
1753 USED(o);
1754 m = bmask.grey;
1755 w = bdst.red;
1756 r = bsrc.red;
1757 ew = w+dx*3;
1758 while(w < ew){
1759 if(*m++){
1760 *w++ = *r++;
1761 *w++ = *r++;
1762 *w++ = *r++;
1763 }else{
1764 w += 3;
1765 r += 3;
1768 return bdst; /* not used */
1771 static Buffer
1772 boolcopy32(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int i, int o)
1774 uchar *m;
1775 u32int *r, *w, *ew;
1777 USED(i);
1778 USED(o);
1779 m = bmask.grey;
1780 w = (u32int*)bdst.red;
1781 r = (u32int*)bsrc.red;
1782 ew = w+dx;
1783 for(; w < ew; w++,r++)
1784 if(*m++)
1785 *w = *r;
1786 return bdst; /* not used */
1789 static Buffer
1790 genconv(Param *p, uchar *buf, int y)
1792 Buffer b;
1793 int nb;
1794 uchar *r, *w, *ew;
1796 /* read from source into RGB format in convbuf */
1797 b = p->convreadcall(p, p->convbuf, y);
1799 /* write RGB format into dst format in buf */
1800 p->convwritecall(p->convdpar, buf, b);
1802 if(p->convdx){
1803 nb = p->convdpar->img->depth/8;
1804 r = buf;
1805 w = buf+nb*p->dx;
1806 ew = buf+nb*p->convdx;
1807 while(w<ew)
1808 *w++ = *r++;
1811 b.red = buf;
1812 b.blu = b.grn = b.grey = b.alpha = nil;
1813 b.rgba = (u32int*)buf;
1814 b.delta = 0;
1816 return b;
1819 static Readfn*
1820 convfn(Memimage *dst, Param *dpar, Memimage *src, Param *spar)
1822 if(dst->chan == src->chan && !(src->flags&Frepl)){
1823 /*if(drawdebug) iprint("readptr..."); */
1824 return readptr;
1827 if(dst->chan==CMAP8 && (src->chan==GREY1||src->chan==GREY2||src->chan==GREY4)){
1828 /* cheat because we know the replicated value is exactly the color map entry. */
1829 /*if(drawdebug) iprint("Readnbit..."); */
1830 return readnbit;
1833 spar->convreadcall = readfn(src);
1834 spar->convwritecall = writefn(dst);
1835 spar->convdpar = dpar;
1837 /* allocate a conversion buffer */
1838 spar->convbufoff = ndrawbuf;
1839 ndrawbuf += spar->dx*4;
1841 if(spar->dx > Dx(spar->img->r)){
1842 spar->convdx = spar->dx;
1843 spar->dx = Dx(spar->img->r);
1846 /*if(drawdebug) iprint("genconv..."); */
1847 return genconv;
1851 * Do NOT call this directly. pixelbits is a wrapper
1852 * around this that fetches the bits from the X server
1853 * when necessary.
1855 u32int
1856 _pixelbits(Memimage *i, Point pt)
1858 uchar *p;
1859 u32int val;
1860 int off, bpp, npack;
1862 val = 0;
1863 p = byteaddr(i, pt);
1864 switch(bpp=i->depth){
1865 case 1:
1866 case 2:
1867 case 4:
1868 npack = 8/bpp;
1869 off = pt.x%npack;
1870 val = p[0] >> bpp*(npack-1-off);
1871 val &= (1<<bpp)-1;
1872 break;
1873 case 8:
1874 val = p[0];
1875 break;
1876 case 16:
1877 val = p[0]|(p[1]<<8);
1878 break;
1879 case 24:
1880 val = p[0]|(p[1]<<8)|(p[2]<<16);
1881 break;
1882 case 32:
1883 val = p[0]|(p[1]<<8)|(p[2]<<16)|(p[3]<<24);
1884 break;
1886 while(bpp<32){
1887 val |= val<<bpp;
1888 bpp *= 2;
1890 return val;
1893 static Calcfn*
1894 boolcopyfn(Memimage *img, Memimage *mask)
1896 if(mask->flags&Frepl && Dx(mask->r)==1 && Dy(mask->r)==1 && pixelbits(mask, mask->r.min)==~0)
1897 return boolmemmove;
1899 switch(img->depth){
1900 case 8:
1901 return boolcopy8;
1902 case 16:
1903 return boolcopy16;
1904 case 24:
1905 return boolcopy24;
1906 case 32:
1907 return boolcopy32;
1908 default:
1909 assert(0 /* boolcopyfn */);
1911 return 0;
1915 * Optimized draw for filling and scrolling; uses memset and memmove.
1917 static void
1918 memsets(void *vp, ushort val, int n)
1920 ushort *p, *ep;
1922 p = vp;
1923 ep = p+n;
1924 while(p<ep)
1925 *p++ = val;
1928 static void
1929 memsetl(void *vp, u32int val, int n)
1931 u32int *p, *ep;
1933 p = vp;
1934 ep = p+n;
1935 while(p<ep)
1936 *p++ = val;
1939 static void
1940 memset24(void *vp, u32int val, int n)
1942 uchar *p, *ep;
1943 uchar a,b,c;
1945 p = vp;
1946 ep = p+3*n;
1947 a = val;
1948 b = val>>8;
1949 c = val>>16;
1950 while(p<ep){
1951 *p++ = a;
1952 *p++ = b;
1953 *p++ = c;
1957 u32int
1958 _imgtorgba(Memimage *img, u32int val)
1960 uchar r, g, b, a;
1961 int nb, ov, v;
1962 u32int chan;
1963 uchar *p;
1965 a = 0xFF;
1966 r = g = b = 0xAA; /* garbage */
1967 for(chan=img->chan; chan; chan>>=8){
1968 nb = NBITS(chan);
1969 ov = v = val&((1<<nb)-1);
1970 val >>= nb;
1972 while(nb < 8){
1973 v |= v<<nb;
1974 nb *= 2;
1976 v >>= (nb-8);
1978 switch(TYPE(chan)){
1979 case CRed:
1980 r = v;
1981 break;
1982 case CGreen:
1983 g = v;
1984 break;
1985 case CBlue:
1986 b = v;
1987 break;
1988 case CAlpha:
1989 a = v;
1990 break;
1991 case CGrey:
1992 r = g = b = v;
1993 break;
1994 case CMap:
1995 p = img->cmap->cmap2rgb+3*ov;
1996 r = *p++;
1997 g = *p++;
1998 b = *p;
1999 break;
2002 return (r<<24)|(g<<16)|(b<<8)|a;
2005 u32int
2006 _rgbatoimg(Memimage *img, u32int rgba)
2008 u32int chan;
2009 int d, nb;
2010 u32int v;
2011 uchar *p, r, g, b, a, m;
2013 v = 0;
2014 r = rgba>>24;
2015 g = rgba>>16;
2016 b = rgba>>8;
2017 a = rgba;
2018 d = 0;
2019 for(chan=img->chan; chan; chan>>=8){
2020 nb = NBITS(chan);
2021 switch(TYPE(chan)){
2022 case CRed:
2023 v |= (r>>(8-nb))<<d;
2024 break;
2025 case CGreen:
2026 v |= (g>>(8-nb))<<d;
2027 break;
2028 case CBlue:
2029 v |= (b>>(8-nb))<<d;
2030 break;
2031 case CAlpha:
2032 v |= (a>>(8-nb))<<d;
2033 break;
2034 case CMap:
2035 p = img->cmap->rgb2cmap;
2036 m = p[(r>>4)*256+(g>>4)*16+(b>>4)];
2037 v |= (m>>(8-nb))<<d;
2038 break;
2039 case CGrey:
2040 m = RGB2K(r,g,b);
2041 v |= (m>>(8-nb))<<d;
2042 break;
2044 d += nb;
2046 /* print("rgba2img %.8lux = %.*lux\n", rgba, 2*d/8, v); */
2047 return v;
2050 #define DBG if(0)
2051 static int
2052 memoptdraw(Memdrawparam *par)
2054 int m, y, dy, dx, op;
2055 u32int v;
2056 Memimage *src;
2057 Memimage *dst;
2059 dx = Dx(par->r);
2060 dy = Dy(par->r);
2061 src = par->src;
2062 dst = par->dst;
2063 op = par->op;
2065 DBG print("state %lux mval %lux dd %d\n", par->state, par->mval, dst->depth);
2067 * If we have an opaque mask and source is one opaque pixel we can convert to the
2068 * destination format and just replicate with memset.
2070 m = Simplesrc|Simplemask|Fullmask;
2071 if((par->state&m)==m && (par->srgba&0xFF) == 0xFF && (op ==S || op == SoverD)){
2072 uchar *dp, p[4];
2073 int d, dwid, ppb, np, nb;
2074 uchar lm, rm;
2076 DBG print("memopt, dst %p, dst->data->bdata %p\n", dst, dst->data->bdata);
2077 dwid = dst->width*sizeof(u32int);
2078 dp = byteaddr(dst, par->r.min);
2079 v = par->sdval;
2080 DBG print("sdval %lud, depth %d\n", v, dst->depth);
2081 switch(dst->depth){
2082 case 1:
2083 case 2:
2084 case 4:
2085 for(d=dst->depth; d<8; d*=2)
2086 v |= (v<<d);
2087 ppb = 8/dst->depth; /* pixels per byte */
2088 m = ppb-1;
2089 /* left edge */
2090 np = par->r.min.x&m; /* no. pixels unused on left side of word */
2091 dx -= (ppb-np);
2092 nb = 8 - np * dst->depth; /* no. bits used on right side of word */
2093 lm = (1<<nb)-1;
2094 DBG print("np %d x %d nb %d lm %ux ppb %d m %ux\n", np, par->r.min.x, nb, lm, ppb, m);
2096 /* right edge */
2097 np = par->r.max.x&m; /* no. pixels used on left side of word */
2098 dx -= np;
2099 nb = 8 - np * dst->depth; /* no. bits unused on right side of word */
2100 rm = ~((1<<nb)-1);
2101 DBG print("np %d x %d nb %d rm %ux ppb %d m %ux\n", np, par->r.max.x, nb, rm, ppb, m);
2103 DBG print("dx %d Dx %d\n", dx, Dx(par->r));
2104 /* lm, rm are masks that are 1 where we should touch the bits */
2105 if(dx < 0){ /* just one byte */
2106 lm &= rm;
2107 for(y=0; y<dy; y++, dp+=dwid)
2108 *dp ^= (v ^ *dp) & lm;
2109 }else if(dx == 0){ /* no full bytes */
2110 if(lm)
2111 dwid--;
2113 for(y=0; y<dy; y++, dp+=dwid){
2114 if(lm){
2115 DBG print("dp %p v %lux lm %ux (v ^ *dp) & lm %lux\n", dp, v, lm, (v^*dp)&lm);
2116 *dp ^= (v ^ *dp) & lm;
2117 dp++;
2119 *dp ^= (v ^ *dp) & rm;
2121 }else{ /* full bytes in middle */
2122 dx /= ppb;
2123 if(lm)
2124 dwid--;
2125 dwid -= dx;
2127 for(y=0; y<dy; y++, dp+=dwid){
2128 if(lm){
2129 *dp ^= (v ^ *dp) & lm;
2130 dp++;
2132 memset(dp, v, dx);
2133 dp += dx;
2134 *dp ^= (v ^ *dp) & rm;
2137 return 1;
2138 case 8:
2139 for(y=0; y<dy; y++, dp+=dwid)
2140 memset(dp, v, dx);
2141 return 1;
2142 case 16:
2143 p[0] = v; /* make little endian */
2144 p[1] = v>>8;
2145 v = *(ushort*)p;
2146 DBG print("dp=%p; dx=%d; for(y=0; y<%d; y++, dp+=%d)\nmemsets(dp, v, dx);\n",
2147 dp, dx, dy, dwid);
2148 for(y=0; y<dy; y++, dp+=dwid)
2149 memsets(dp, v, dx);
2150 return 1;
2151 case 24:
2152 for(y=0; y<dy; y++, dp+=dwid)
2153 memset24(dp, v, dx);
2154 return 1;
2155 case 32:
2156 p[0] = v; /* make little endian */
2157 p[1] = v>>8;
2158 p[2] = v>>16;
2159 p[3] = v>>24;
2160 v = *(u32int*)p;
2161 for(y=0; y<dy; y++, dp+=dwid)
2162 memsetl(dp, v, dx);
2163 return 1;
2164 default:
2165 assert(0 /* bad dest depth in memoptdraw */);
2170 * If no source alpha, an opaque mask, we can just copy the
2171 * source onto the destination. If the channels are the same and
2172 * the source is not replicated, memmove suffices.
2174 m = Simplemask|Fullmask;
2175 if((par->state&(m|Replsrc))==m && src->depth >= 8
2176 && src->chan == dst->chan && !(src->flags&Falpha) && (op == S || op == SoverD)){
2177 uchar *sp, *dp;
2178 long swid, dwid, nb;
2179 int dir;
2181 if(src->data == dst->data && byteaddr(dst, par->r.min) > byteaddr(src, par->sr.min))
2182 dir = -1;
2183 else
2184 dir = 1;
2186 swid = src->width*sizeof(u32int);
2187 dwid = dst->width*sizeof(u32int);
2188 sp = byteaddr(src, par->sr.min);
2189 dp = byteaddr(dst, par->r.min);
2190 if(dir == -1){
2191 sp += (dy-1)*swid;
2192 dp += (dy-1)*dwid;
2193 swid = -swid;
2194 dwid = -dwid;
2196 nb = (dx*src->depth)/8;
2197 for(y=0; y<dy; y++, sp+=swid, dp+=dwid)
2198 memmove(dp, sp, nb);
2199 return 1;
2203 * If we have a 1-bit mask, 1-bit source, and 1-bit destination, and
2204 * they're all bit aligned, we can just use bit operators. This happens
2205 * when we're manipulating boolean masks, e.g. in the arc code.
2207 if((par->state&(Simplemask|Simplesrc|Replmask|Replsrc))==0
2208 && dst->chan==GREY1 && src->chan==GREY1 && par->mask->chan==GREY1
2209 && (par->r.min.x&7)==(par->sr.min.x&7) && (par->r.min.x&7)==(par->mr.min.x&7)){
2210 uchar *sp, *dp, *mp;
2211 uchar lm, rm;
2212 long swid, dwid, mwid;
2213 int i, x, dir;
2215 sp = byteaddr(src, par->sr.min);
2216 dp = byteaddr(dst, par->r.min);
2217 mp = byteaddr(par->mask, par->mr.min);
2218 swid = src->width*sizeof(u32int);
2219 dwid = dst->width*sizeof(u32int);
2220 mwid = par->mask->width*sizeof(u32int);
2222 if(src->data == dst->data && byteaddr(dst, par->r.min) > byteaddr(src, par->sr.min)){
2223 dir = -1;
2224 }else
2225 dir = 1;
2227 lm = 0xFF>>(par->r.min.x&7);
2228 rm = 0xFF<<(8-(par->r.max.x&7));
2229 dx -= (8-(par->r.min.x&7)) + (par->r.max.x&7);
2231 if(dx < 0){ /* one byte wide */
2232 lm &= rm;
2233 if(dir == -1){
2234 dp += dwid*(dy-1);
2235 sp += swid*(dy-1);
2236 mp += mwid*(dy-1);
2237 dwid = -dwid;
2238 swid = -swid;
2239 mwid = -mwid;
2241 for(y=0; y<dy; y++){
2242 *dp ^= (*dp ^ *sp) & *mp & lm;
2243 dp += dwid;
2244 sp += swid;
2245 mp += mwid;
2247 return 1;
2250 dx /= 8;
2251 if(dir == 1){
2252 i = (lm!=0)+dx+(rm!=0);
2253 mwid -= i;
2254 swid -= i;
2255 dwid -= i;
2256 for(y=0; y<dy; y++, dp+=dwid, sp+=swid, mp+=mwid){
2257 if(lm){
2258 *dp ^= (*dp ^ *sp++) & *mp++ & lm;
2259 dp++;
2261 for(x=0; x<dx; x++){
2262 *dp ^= (*dp ^ *sp++) & *mp++;
2263 dp++;
2265 if(rm){
2266 *dp ^= (*dp ^ *sp++) & *mp++ & rm;
2267 dp++;
2270 return 1;
2271 }else{
2272 /* dir == -1 */
2273 i = (lm!=0)+dx+(rm!=0);
2274 dp += dwid*(dy-1)+i-1;
2275 sp += swid*(dy-1)+i-1;
2276 mp += mwid*(dy-1)+i-1;
2277 dwid = -dwid+i;
2278 swid = -swid+i;
2279 mwid = -mwid+i;
2280 for(y=0; y<dy; y++, dp+=dwid, sp+=swid, mp+=mwid){
2281 if(rm){
2282 *dp ^= (*dp ^ *sp--) & *mp-- & rm;
2283 dp--;
2285 for(x=0; x<dx; x++){
2286 *dp ^= (*dp ^ *sp--) & *mp--;
2287 dp--;
2289 if(lm){
2290 *dp ^= (*dp ^ *sp--) & *mp-- & lm;
2291 dp--;
2295 return 1;
2297 return 0;
2299 #undef DBG
2302 * Boolean character drawing.
2303 * Solid opaque color through a 1-bit greyscale mask.
2305 #define DBG if(0)
2306 static int
2307 chardraw(Memdrawparam *par)
2309 u32int bits;
2310 int i, ddepth, dy, dx, x, bx, ex, y, npack, bsh, depth, op;
2311 u32int v, maskwid, dstwid;
2312 uchar *wp, *rp, *q, *wc;
2313 ushort *ws;
2314 u32int *wl;
2315 uchar sp[4];
2316 Rectangle r, mr;
2317 Memimage *mask, *src, *dst;
2319 if(0) if(drawdebug) iprint("chardraw? mf %lux md %d sf %lux dxs %d dys %d dd %d ddat %p sdat %p\n",
2320 par->mask->flags, par->mask->depth, par->src->flags,
2321 Dx(par->src->r), Dy(par->src->r), par->dst->depth, par->dst->data, par->src->data);
2323 mask = par->mask;
2324 src = par->src;
2325 dst = par->dst;
2326 r = par->r;
2327 mr = par->mr;
2328 op = par->op;
2330 if((par->state&(Replsrc|Simplesrc|Fullsrc|Replmask)) != (Replsrc|Simplesrc|Fullsrc)
2331 || mask->depth != 1 || dst->depth<8 || dst->data==src->data
2332 || op != SoverD)
2333 return 0;
2335 /*if(drawdebug) iprint("chardraw..."); */
2337 depth = mask->depth;
2338 maskwid = mask->width*sizeof(u32int);
2339 rp = byteaddr(mask, mr.min);
2340 npack = 8/depth;
2341 bsh = (mr.min.x % npack) * depth;
2343 wp = byteaddr(dst, r.min);
2344 dstwid = dst->width*sizeof(u32int);
2345 DBG print("bsh %d\n", bsh);
2346 dy = Dy(r);
2347 dx = Dx(r);
2349 ddepth = dst->depth;
2352 * for loop counts from bsh to bsh+dx
2354 * we want the bottom bits to be the amount
2355 * to shift the pixels down, so for n≡0 (mod 8) we want
2356 * bottom bits 7. for n≡1, 6, etc.
2357 * the bits come from -n-1.
2360 bx = -bsh-1;
2361 ex = -bsh-1-dx;
2362 SET(bits);
2363 v = par->sdval;
2365 /* make little endian */
2366 sp[0] = v;
2367 sp[1] = v>>8;
2368 sp[2] = v>>16;
2369 sp[3] = v>>24;
2371 /*print("sp %x %x %x %x\n", sp[0], sp[1], sp[2], sp[3]); */
2372 for(y=0; y<dy; y++, rp+=maskwid, wp+=dstwid){
2373 q = rp;
2374 if(bsh)
2375 bits = *q++;
2376 switch(ddepth){
2377 case 8:
2378 /*if(drawdebug) iprint("8loop..."); */
2379 wc = wp;
2380 for(x=bx; x>ex; x--, wc++){
2381 i = x&7;
2382 if(i == 8-1)
2383 bits = *q++;
2384 DBG print("bits %lux sh %d...", bits, i);
2385 if((bits>>i)&1)
2386 *wc = v;
2388 break;
2389 case 16:
2390 ws = (ushort*)wp;
2391 v = *(ushort*)sp;
2392 for(x=bx; x>ex; x--, ws++){
2393 i = x&7;
2394 if(i == 8-1)
2395 bits = *q++;
2396 DBG print("bits %lux sh %d...", bits, i);
2397 if((bits>>i)&1)
2398 *ws = v;
2400 break;
2401 case 24:
2402 wc = wp;
2403 for(x=bx; x>ex; x--, wc+=3){
2404 i = x&7;
2405 if(i == 8-1)
2406 bits = *q++;
2407 DBG print("bits %lux sh %d...", bits, i);
2408 if((bits>>i)&1){
2409 wc[0] = sp[0];
2410 wc[1] = sp[1];
2411 wc[2] = sp[2];
2414 break;
2415 case 32:
2416 wl = (u32int*)wp;
2417 v = *(u32int*)sp;
2418 for(x=bx; x>ex; x--, wl++){
2419 i = x&7;
2420 if(i == 8-1)
2421 bits = *q++;
2422 DBG iprint("bits %lux sh %d...", bits, i);
2423 if((bits>>i)&1)
2424 *wl = v;
2426 break;
2430 DBG print("\n");
2431 return 1;
2433 #undef DBG
2437 * Fill entire byte with replicated (if necessary) copy of source pixel,
2438 * assuming destination ldepth is >= source ldepth.
2440 * This code is just plain wrong for >8bpp.
2442 u32int
2443 membyteval(Memimage *src)
2445 int i, val, bpp;
2446 uchar uc;
2448 unloadmemimage(src, src->r, &uc, 1);
2449 bpp = src->depth;
2450 uc <<= (src->r.min.x&(7/src->depth))*src->depth;
2451 uc &= ~(0xFF>>bpp);
2452 * pixel value is now in high part of byte. repeat throughout byte
2453 val = uc;
2454 for(i=bpp; i<8; i<<=1)
2455 val |= val>>i;
2456 return val;
2461 void
2462 _memfillcolor(Memimage *i, u32int val)
2464 u32int bits;
2465 int d, y;
2466 uchar p[4];
2468 if(val == DNofill)
2469 return;
2471 bits = _rgbatoimg(i, val);
2472 switch(i->depth){
2473 case 24: /* 24-bit images suck */
2474 for(y=i->r.min.y; y<i->r.max.y; y++)
2475 memset24(byteaddr(i, Pt(i->r.min.x, y)), bits, Dx(i->r));
2476 break;
2477 default: /* 1, 2, 4, 8, 16, 32 */
2478 for(d=i->depth; d<32; d*=2)
2479 bits = (bits << d) | bits;
2480 p[0] = bits; /* make little endian */
2481 p[1] = bits>>8;
2482 p[2] = bits>>16;
2483 p[3] = bits>>24;
2484 bits = *(u32int*)p;
2485 memsetl(wordaddr(i, i->r.min), bits, i->width*Dy(i->r));
2486 break;